Ультрафиолетовое излучение источники польза вред. Как защититься от повреждающего воздействия ультрафиолетовых лучей. Положительное влияние ультрафиолета

На коже потемнение, которое загаром. Принято считать, что если солнечный свет через прозрачные предметы, то все его лучи полностью достигают поверхности кожи, поэтому загар в таком случае тоже может возникнуть. Но на самом деле это не так: через стекло практически не загорает. Это объясняется тем, что стекло задерживает часть излучения, которая отвечает за выработку меланина в организме человека.

Ультрафиолетовое излучение делится на три типа: А, В и С. Первое является длинноволновым: эти волны действуют незаметно, проникая под кожу и воздействуя на различные внутренние процессы. Эти лучи уменьшают количество воды, коллагена и эластина в клетках эпидермиса, в результате кожа быстрее стареет. Длинноволновое излучение может вызвать аллергическую реакцию и небольшое покраснение, но не способствует появлению загара, так как меланин в клетках не появляется. Под его воздействием образуются лишь предшественники этого вещества – элементы без цвета, которые только при окислении могут вызвать потемнение кожи.

Излучение В коротковолновое, именно оно заставляет меланоциты человека вырабатывать меланин, в результате кожа становится темнее. Если доза этого излучения высокая, то может появиться ожог, а при регулярном воздействии большого количества лучей типа В появляется рак кожи.

Лучи С почти не достигают поверхности Земли, поглощаясь озоновым слоем.

Загар через стекло

Стекло пропускает только длинноволновое излучение, а лучи В задерживает, поэтому выработка меланина под воздействием солнечного света за стеклом невозможна. Но длинные волны типа А не теряют способности влиять на кожу человека: они не только вызывают старение, но и подготавливают кожу к воздействию лучей В. При длительном нахождении под лучами солнца, проникающими через стекло, возможно небольшое покраснение, но не больше: меланоциты не работают в таком случае. Загореть через стекло теоретически возможно, если постоянно находиться под излучением. Но это не будет загар в прямом значении этого слова: это тепловое повреждение кожи, которое привело к покраснению.

Именно постоянным действием длинноволнового излучения можно объяснить, почему руки водителей автомобилей со стороны окна темнеют после длительных поездок.

Все вышесказанное относится к обычному оконному стеклу, другие типы – кварцевое или оргстекло – пропускают ультрафиолетовые лучи гораздо лучше, именно их используют для соляриев.


Ультрафиолет поражает именно живые клетки, не оказывая воздействие на химический состав воды и воздуха, что исключительно выгодно отличает его от всех химических способов дезинфекции и обеззараживания воды.

Достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности обеззараживания воды ультрафиолетовыми лучами.

Что это за излучение

Ультрафиолетовое излучение, ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 400-10 нм. Вся область УФ-излучения условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм); последнее название обусловлено тем, что УФ-излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Естественные источники УФ-излучения - Солнце, звёзды, туманности и др. космические объекты. Однако лишь длинноволновая часть УФ-излучения - 290 нм достигает земной поверхности. Более коротковолновое УФ-излучение поглощается озоном, кислородом и др. компонентами атмосферы на высоте 30-200 км от поверхности Земли, что играет большую роль в атмосферных процессах.

Искусственные источники УФ-излучения. Для различных применений УФ-излучения промышленность выпускает ртутные, водородные, ксеноновые и др. газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для УФ-излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и т.д.) является мощным источником УФ-излучения.

Несмотря на то, что ультрафиолет нам дан самой природой, он небезопасен

Ультрафиолет бывает трех типов: «А»; «B»; «С». Озоновый слой предотвращает попадание на поверхность земли Ультрафиолета «С». Свет в спектре ультрафиолета «А» имеет длину волн от 320 до 400 нм, свет в спектре ультрафиолет «В» имеет длину волн от 290 до 320 нм. УФ-излучение обладает энергией, достаточной для воздействия на химические связи, в том числе и в живых клетках.

Энергия ультрафиолетовой компоненты солнечного света вызывает повреждения микроорганизмов на клеточном и генетическом уровнях, тот же самый ущерб наносится людям, но он ограничен кожей и глазами. Солнечные ожоги вызываются воздействием ультрафиолета «В». Ультрафиолет «А» проникает гораздо глубже, чем ультрафиолет «В» и способствует преждевременному старению кожи. Кроме того, воздействие ультрафиолета «А» и «В» приводит к раку кожи.

Из истории ультрафиолетовых лучей

Бактерицидное действие ультрафиолетовых лучей было обнаружено около 100 лет назад. Первые лабораторные испытания УФИ в 1920х годах были настолько многообещающими, что полное уничтожение воздушно-капельных инфекций казалось возможным в самое ближайшее время. УФИ стало активно применяться с 1930х годов и в 1936 г. было впервые использовано для стерилизации воздуха в хирургической операционной комнате. В 1937 г. первое применение УФИ в вентиляционной системе одной из американских школ впечатляюще снизило уровень заболеваемости учащихся корью и другими инфекциями. Тогда казалось, что найдено замечательное средство для борьбы с воздушно-капельными инфекциями. Однако, дальнейшее изучение УФИ и опасных побочных действий серьезно сузило возможности его использования в присутствии людей.

Сила проникновения ультрафиолетовых лучей невелика и распространяются они только по прямой, т.е. в любом рабочем помещении образуется множество затенённых зон, которые не подвержены бактерицидной обработке. По мере удаления от источника ультрафиолетого излучения биоцидность его действия резко снижается. Действие лучей ограничивается поверхностью облучаемого предмета, и его чистота имеет большое значение.

Бактерицидное действие ультрафиолета

Обеззараживающий эффект УФ излучения, в основном, обусловлен фотохимическими реакциями, в результате которых происходят необратимые повреждения ДНК. Помимо ДНК ультрафиолет действует и на другие структуры клеток, в частности, на РНК и клеточные мембраны. Ультрафиолет как высокоточное оружие поражает именно живые клетки, не оказывая воздействие на химический состав среды, что имеет место для химических дезинфектантов. Последнее свойство исключительно выгодно отличает его от всех химических способов дезинфекции.

Применение ультрафиолета

Ультрафиолет используется в настоящее время в различных областях: медицинских учреждениях (больницы, поликлиники, госпитали); пищевой промышленности (продукты, напитки); фармацевтической промышленности; ветеринарии; для обеззараживания питьевой, оборотной и сточной воды.

Современные достижения свето- и электротехники обеспечили условия для создания крупных комплексов УФ-обеззараживания. Широкое внедрение УФ-технологии в муниципальные и промышленные системы водоснабжения позволяют обеспечить эффективное обеззараживание (дезинфекцию) как питьевой воды перед подачей в сети горводопровода, так и сточных вод перед их выпуском в водоемы. Это позволяет исключить применение токсичного хлора, существенно повысить надежность и безопасность систем водоснабжения и канализации в целом.

Обеззараживание воды ультрафиолетом

Одной из актуальных задач при обеззараживании питьевой воды, а также промышленных и бытовых стоков после их осветления (биоочистки) является применение технологии, не использующей химические реагенты, т. е. технологии, не приводящей к образованию в процессе обеззараживания токсичных соединений (как в случае применения соединений хлора и озонирования) при одновременном полном уничтожении патогенной микрофлоры.

Различают три участка спектра ультрафиолетового излучения, имеющего различное биологическое воздействие. Слабое биологическое воздействие имеет ультрафиолетовое излучение с длиной волны 390-315 нм. Противорахитичным действием обладают УФ-лучи в диапазоне 315-280 нм, а ультрафиолетовое излучение с длиной волны 280-200 нм обладает способностью убивать микроорганизмы.

Ультрафиолетовые лучи длиной волн 220-280 им действуют на бактерии губительно, причем максимум бактерицидного действия соответствует длине волн 264 нм. Данное обстоятельство используется в бактерицидных установках, предназначенных для обеззараживания в основном подземных вод. Источником ультрафиолетовых лучей является ртутно-аргонная или ртутно-кварцевая лампа, устанавливаемая в кварцевом чехле в центре металлического корпуса. Чехол защищает лампу от контакта с водой, но свободно пропускает ультрафиолетовые лучи. Обеззараживание происходит во время протекания воды в пространстве между корпусом и чехлом при непосредственном воздействии ультрафиолетовых лучей на микробы.

Оценка бактерицидного действия производится в единицах, называемых бактами (б). Для обеспечения бактерицидного эффекта ультрафиолетового облучения достаточно примерно 50 мкб мин/см2. УФ-облучение наиболее перспективный метод обеззараживания воды с высокой эффективностью по отношению к патогенным микроорганизмам, не приводящий к образованию вредных побочных продуктов, чем иногда грешит озонирование.

УФ-облучение идеально для обеззараживания артезианских вод

Точка зрения, что подземные воды считаются свободными от микробных загрязнений в результате фильтрации воды через почву, не совсем верна. Исследования показали, что подземные воды свободны от крупных микроорганизмов, таких как протоза или гельминты, но более мелкие микроорганизмы, например, вирусы, могут проникать сквозь почву в подземные источники воды. Даже если бактерии не обнаружены в воде, оборудование для обеззараживания должно служить барьером от сезонных или аварийных заражений.

УФ-облучение должно применяться для обеспечения обеззараживания воды до нормативного качества по микробиологическим показателям, при этом необходимые дозы выбираются на основании требуемого снижения концентрации патогенных и индикаторных микроорганизмов.

УФ-облучение не образует побочных продуктов реакции, его доза может быть увеличена до значений, обеспечивающих эпидемиологическую безопасность, как по бактериям, так и по вирусам. Известно, что УФ-излучение действует на вирусы намного эффективнее, чем хлор, поэтому применение ультрафиолета при подготовке питьевой воды позволяет, в частности, во многом решить проблему удаления вирусов гепатита А, которая не всегда решается при традиционной технологии хлорирования.

Использование УФ-облучения в качестве обеззараживания рекомендуется для воды, уже прошедшей очистку по цветности, мутности и содержанию железа. Эффект обеззараживания воды контролируют, определяя общее число бактерий в 1 см3 воды и количество индикаторных бактерий группы кишечной палочки в 1 л воды после ее обеззараживания.

На сегодняшний день широкое распространение получили УФ-лампы проточного типа. Основным элементом данной установки является блок облучателей состоящий из ламп УФ-спектра в количестве, определяемом необходимой производительностью по обработанной воде. Внутри лампа имеет полость для протока. Контакт с УФ-лучами происходит через специальные окошечки внутри лампы. Корпус установки выполнен из металла, защищающего от проникновения лучей в окружающую среду.

Вода, подающаяся на установку должна соответствовать следующим требованиям:


  • общее содержание железа – не более 0,3 мг/л, марганца – 0,1 мг/л;

  • содержание сероводорода – не более 0,05 мг/л;

  • мутность – не более 2 мг/л по каолину;

  • цветность – не более 35 град.

Метод ультрафиолетового обеззараживания имеет следующие преимущества по отношению к окислительным обеззараживающим методам (хлорирование, озонирование):


  • УФ облучение летально для большинства водных бактерий, вирусов, спор и протозоа. Оно уничтожает возбудителей таких инфекционных болезней, как тиф, холера, дизентерия, вирусный гепатит, полиомиелит и др. Применение ультрафиолета позволяет добиться более эффективного обеззараживания, чем хлорирование, особенно в отношении вирусов;

  • обеззараживание ультрафиолетом происходит за счет фотохимических реакций внутри микроорганизмов, поэтому на его эффективность изменение характеристик воды оказывает намного меньшее влияние, чем при обеззараживании химическими реагентами. В частности, на воздействие ультрафиолетового излучения на микроорганизмы не влияют рН и температура воды;

  • в обработанной ультрафиолетовым излучением воде не обнаруживаются токсичные и мутагенные соединения, оказывающие негативное влияние на биоценоз водоемов;

  • в отличие от окислительных технологий в случае передозировки отсутствуют отрицательные эффекты. Это позволяет значительно упростить контроль за процессом обеззараживания и не проводить анализы на определение содержания в воде остаточной концентрации дезинфектанта;

  • время обеззараживания при УФ облучении составляет 1-10 секунд в проточном режиме, поэтому отсутствует необходимость в создании контактных емкостей;

  • достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности УФ комплексов. Современные УФ лампы и пускорегулирующая аппаратура к ним выпускаются серийно, имеют высокий эксплуатационный ресурс;

  • для обеззараживания ультрафиолетовым излучением характерны более низкие, чем при хлорировании и, тем более, озонировании эксплуатационные расходы. Это связано со сравнительно небольшими затратами электроэнергии (в 3-5 раз меньшими, чем при озонировании); отсутствием потребности в дорогостоящих реагентах: жидком хлоре, гипохлорите натрия или кальция, а также отсутствием необходимости в реагентах для дехлорирования;

  • отсутствует необходимость создания складов токсичных хлорсодержащих реагентов, требующих соблюдения специальных мер технической и экологической безопасности, что повышает надежность систем водоснабжения и канализации в целом;

  • ультрафиолетовое оборудование компактно, требует минимальных площадей, его внедрение возможно в действующие технологические процессы очистных сооружений без их остановки, с минимальными объемами строительно-монтажных работ.

Ультрафиолетовые лучи имеют самую большую биологическую активность. Если учесть природные условия, то наиболее мощным кладезем таких лучей считается солнце. Поверхности земли касается лишь длинноволновая часть, а коротковолновую поглощает атмосфера. Помимо, естественных источников существуют искусственные, излучению которых можно подвергаться непроизвольно или же с целью лечения.

Общая характеристика

Ультрафиолетовое излучение – это излучение электромагнитного характера, имеющее длину волн от десяти до четырехсот нм. Их испускание, а также поглощение осуществляется различными квантами энергии. В медицине применяют лучи, длина которых равна 180-400 нм. Помимо этого, ультрафиолетовое излучение имеет отдельные спектры, имеющие лечебные свойства, например:

  • А – от 315 до 400 нм;
  • В – от 280 до 315 нм;
  • С – от 180 до 280 нм.

Спектр А и В относят к длинноволновым лучам, а именно ДУФ, что касается группы С, то ее считают коротковолновой – КУФ.

УФ излучение владеет специфической активностью фотохимического характера, что активно и успешно применяют в медицине, а также на производстве. Облучение используют в процессе отбеливания тканей, синтезе конкретных веществ, получении витамина Д, производстве кожи лакированной, а также различных производственных манипуляциях. Важно учесть, что излучение имеет уникальные свойства, а именно – возможность организовать люминесценцию.

Ультрафиолетовое излучение оказывает влияние на следующий тип работников:

  • медицинский персонал;
  • сварщики;
  • технические работники;
  • в процессе стерилизации воды, а также светокопировки;
  • при плавке, литье металлов;
  • на производстве радиоламп.

Это важно! Ультрафиолетовые лучи способны изменять химическую структуру клеток, тканей.

Основные источники излучения

Ультрафиолетовое излучение имеет некоторые источники, а именно – естественные, искусственные. Что касается естественного источника, то к нему относятся солнечный свет, звезды, космические объекты и туманности. Земли достигает длинноволновая часть. Главный природный источник – солнце. Наибольшему воздействию подвержена та группа лиц, которая на протяжении длительного времени пребывает под солнечным светом.

Искусственные источники, оказывающие влияние на людей, подразделяются на несколько основных подгрупп:

Дуга сварки промышленной

Основным источником UVR экспозиции принято считать энергию оборудования для данной конструкции. УФ излучение достаточно высокое. Вызывает серьезное поражение кожного покрова, глаз, после 3-10 минут воздействия. Такое влияние возможно при нахождении в нескольких метрах от сварки. Именно поэтому работник, который занимается сваркой, обязан иметь специальную защиту для кожи, глаз.

Черный свет

Искусственный источник УФ излучений. Это специфическая лампа, которая занимается выработкой энергии ультрафиолетового диапазона. В основном их используют для испытаний порошков флуоресцентных с помощью адеструктивного способа, чтобы определить подлинность документов, банкнот и прочее. При воздействии на человеческий организм не причиняют существенного вреда.

Лампы рабочие и промышленные

UVR лампы – рабочие, промышленные. На производстве имеется множество процессов, которые используют указанную лампу. Например: фотохимический метод закрепления пластиков, чернил, красок. Воздействие на человека минимальное, так как применяется экранирование.

Лампа бактерицидная

Источник излучения – UVR лампа бактерицидная. В данной ситуации имеется УФ излучение, длина волн которого находится в диапазоне от 250 до 265 нм, что подходит для проведения дезинфекции, стерилизации. Их применение весьма удачно в медицинских учреждениях, цель которых – борьба с туберкулезом. Важно правильно установить такую лампу, а также воспользоваться защитой для глаз.

Загар косметический

Если человек пользуется услугами искусственного загара, то специальная кушетка может оказать воздействие на экспозицию кожного покрова УФ излучению. Кроме этого, работники таких салонов подвергаются постоянному влиянию низкочастотного ультрафиолета.

Освещение

На предприятиях, в домах и офисах широко используются лампы флуоресцентные, которые являются кладезем маленькой порции УФ излучения.

Как можно заметить, человек подвергается излучению не только на производстве, но и в домашних условиях.

Медицинское использование

Ультрафиолетовое излучение имеет широкое применение в современной медицине. Это обусловлено тем, что УФ лучи способны проводить болеутоляющий эффект, снижать повышенную возбудимость. Свойства излучений настолько уникальны, что благодаря им можно осуществить антирахитическое, а также антиспастическое воздействие. Под его влиянием наблюдается формирование витамина Д. В человеческом организме усиливается процесс окисления, ткани поглощают больше кислорода, что способствует выделению углекислоты. УФ излучение вызывает активацию ферментов, улучшение углеводного, белкового обмена, повышение уровня фосфатов и кальция в крови.

При правильном применении происходят следующие процессы:

  • повышение тонуса организма;
  • расширение сосудов;
  • снижение артериального давления;
  • улучшение циркуляции крови;
  • происходят регенеративные процессы.

Применение УФ излучения в медицине основывается на оказании десенсибилизирующего, противовоспалительного воздействия, что вызывает значительные улучшения.

Используя комплекс мероприятий, УФ облучение проводят с лечебной целью:

  • при заболеваниях кожного покрова;
  • рахит;
  • туберкулез суставов, костей, а также лимфатических узлов;
  • отморожения, ожоги;
  • болезни периферической нервной системы;
  • фиброзный туберкулез;
  • заживление травм;
  • гнойные раны.

Важно учесть имеющиеся противопоказания к данной процедуре:

  • быстрое истощение организма;
  • заболевания сердечно-сосудистой системы;
  • злокачественные опухоли;
  • болезни почек;
  • активная стадия легочного туберкулеза;
  • нарушения в работе ЦНС.

Следует помнить о температуре излучений, так как это очень важно. Тело вступает в процесс генерации, когда температура УФ излучений достигает отметки 1200 градусов.

Негативное влияние УФ

УФ облучение на протяжении длительного времени, сказывается негативным образом на здоровье человека, так как провоцирует развитие патологий. Если облучение значительное, проявляются такие симптомы:

  • вялость и апатия, быстрая утомляемость;
  • мигрени;
  • нарушение памяти;
  • повышенная сонливость;
  • отсутствие аппетита.

Чрезмерное влияние излучений ультрафиолета способно стать причиной:

  • ожогов;
  • дерматитов;
  • отечности и зуда;
  • гемолиза;
  • гиперкальцемии;
  • высокая температура тела;
  • разбитость и подавленность;
  • задержка в развитии и прочее.

Это важно! Помните о том, что любой дерматит может спровоцировать развитие онкологии.

Чтобы избежать негативных последствий, необходимо обеспечить себя специальной защитой. На производственных предприятиях стоит использовать шлемы, щитки и очки защитные, ширмы изолирующие, спецодежду, а также переносной экран. Что касается бытовых условий, то желательно пользоваться солнцезащитным кремом, спреем или лосьоном, а также носить очки с затемненными стеклами.

Спектр лучей, видимых глазом человека, не имеет резкой, четко определенной границы. Верхней границей видимого спектра одни исследователи называют 400 нм, другие 380, третьи сдвигают ее до 350...320 нм. Это объясняется различной световой чувствительностью зрения и указывает на наличие лучей не видимых глазом.
В 1801 г. И. Риттер (Германия) и У. Уола-стон (Англия) используя фотопластинку доказали наличие ультрафиолетовых лучей. За фиолетовой границей спектра она чернеет быстрее, чем под влиянием видимых лучей. Поскольку почернение пластинки происходит в результате фотохимической реакции, ученые пришли к выводу, что ультрафиолетовые лучи весьма активны.
Ультрафиолетовые лучи охватывают широкий диапазон излучений: 400...20 нм. Область излучения 180... 127 нм называется вакуумной. Посредством искусственных источников (ртутно-кварцевых, водородных и дуговых ламп), дающих как линейчатый, так и непрерывный спектр, получают ультрафиолетовые лучи с длиной волны до 180 нм. В 1914 г. Лайман исследовал диапазон до 50 нм.
Исследователи обнаружили тот факт, что спектр ультрафиолетовых лучей Солнца, достигающих земной поверхности, очень узок - 400...290 нм. Неужели солнце не излучает свет с длиной волны короче 290 нм?
Ответ на этот вопрос нашел А. Корню (Франция). Он установил, что озон поглощает ультрафиолетовые лучи короче 295 нм, после чего выдвинул предположение: Солнце излучает коротковолновые ультрафиолетовое излучение, под его действием молекулы кислорода распадаются на отдельные атомы, образуя молекулы озона, поэтому в верхних слоях атмосферы озон должен покрывать землю защитным экраном. Гипотеза Корню получила подтверждение тогда, когда люди поднялись в верхние слои атмосферы. Таким образом, в земных условиях спектр солнца ограничен пропусканием озонового слоя.
Количество ультрафиолетовых лучей, достигающих земной поверхности, зависит от высоты Солнца над горизонтом. В течение периода нормального освещения освещенность изменяется на 20%, тогда как количество ультрафиолетовых лучей достигающих земной поверхности уменьшается в 20 раз.
Специальными экспериментами установлено, что при подъеме вверх на каждые 100 м интенсивность ультрафиолетового излучения возрастает на 3...4%. На долю рассеянного ультрафиолета в летний полдень приходится 45...70% излучения, а достигающего земной поверхности - 30...55%. В пасмурные дни, когда диск Солнца закрыт тучами, поверхности Земли достигает главным образом рассеянная радиация. Поэтому можно хорошо загореть не только под прямыми лучами солнца, но и в тени, и в пасмурные дни.
Когда Солнце стоит в зените, в экваториальной области поверхности земли достигают лучи длиной 290...289 нм. В средних широтах коротковолновая граница, в летние месяцы, составляет примерно 297 нм. В период эффективного освещения верхняя граница спектра составляет порядка 300 нм. За полярным кругом земной поверхности достигают лучи с длиной волны 350...380 нм.

Влияние ультрафиолетового излучения на биосферу

Выше диапазона вакуумной радиации ультрафиолетовые лучи легко поглощаются водой, воздухом, стеклом, кварцем и не достигают биосферы Земли. В диапазоне 400... 180 нм влияние на живые организмы лучей различной длины волны не одинакова. Наиболее богатые энергией коротковолновые лучи сыграли существенную роль в образовании первых сложных органических соединений на Земле. Однако эти лучи способствуют не только образованию, но и распаду органических веществ. Поэтому прогресс жизненных форм на Земле наступил лишь после того, когда благодаря деятельности зеленых растений атмосфера обогатилась кислородом и, под действием ультрафиолетовых лучей, образовался защитный озоновый слой.
Для нас представляют интерес ультрафиолетовое излучение Солнца и искусственных источников ультрафиолетового излучения в диапазоне 400...180 нм. Внутри этого диапазона выделены три области:

А - 400...320 нм;
В - 320...275 нм;
С - 275...180нм.

В действии каждого из этих диапазонов на живой организм есть существенные различия. Ультрафиолетовые лучи действуют на вещество, в том числе и живое, по тем же законам, что и видимый свет. Часть поглощаемой энергии превращается в тепло, но тепловое действие ультрафиолетовых лучей не оказывает на организм заметного влияния. Другой способ передачи энергии - люминесценция.
Фотохимические реакции под действием ультрафиолетовых лучей проходят наиболее интенсивно. Энергия фотонов ультрафиолетового света очень велика, поэтому при их поглощении молекула ионизируется и распадается на части. Иногда фотон выбивает электрон за пределы атома. Чаще всего происходит возбуждение атомов и молекул. При поглощении одного кванта света с длиной волны 254 нм энергия молекулы возрастает до уровня, соответствующего энергии теплового движения при температуре 38000°С.
Основная часть солнечной энергии достигает земли в качестве видимого света и инфракрасного излучения и лишь незначительная часть - в виде ультрафиолета. Максимальных значений поток УФ достигает в середине лета на Южном полушарии (Земля на 5% ближе к Солнцу) и 50% от суточного количества УФ поступает в течение 4-х полуденных часов. Diffey установил, что для географических широт с температурой 20-60° человек, загорающий с 10:30 до 11:30 и затем с 16:30 до заката, получит только 19% от суточной дозы УФ. В полдень, интенсивность УФ (300 нм) в 10 раз выше, чем тремя часами раньше или позже: незагорелому человеку достаточно 25 минут для получения легкого загара в полдень, однако для достижения этого же эффекта после 15:00, ему понадобится лежать на солнце не менее 2-х часов.
Ультрафиолетовый спектр в свою очередь разделяют на ультрафиолет-А (UV-A) с длиной волны 315-400 nm, ультрафиолет-В (UV-B) -280-315 nm и ультрафиолет-С (UV-С)- 100-280 nm которые отличаются по проникающей способности и биологическому воздействию на организм.
UV-A не задерживается озоновым слоем, проходит сквозь стекло и роговой слой кожи. Поток UV-A (среднее значение в полдень) в два раза выше на уровне Полярного Круга, чем на экваторе, так что абсолютное его значение больше в высоких широтах. Не отмечается и существенных колебаний в интенсивности UV-A в разные времена года. За счет поглощения, отражения и рассеивания при прохождении через эпидермис, в дерму проникает только 20-30% UV-A и около 1% от общей его энергии достигает подкожной клетчатки.
Большая часть UV-B поглощается озоновым слоем, который "прозрачен" для UV-A. Так что доля UV-B во всей энергии ультрафиолетового излучения в летний полдень составляет всего около 3%. Он практически не проникает сквозь стекло, на 70% отражается роговым слоем, на 20% ослабляется при прохождении через эпидермис - в дерму проникает менее 10%.
Однако длительное время считалось, что доля UV-В в повреждающем действии ультрафиолета составляет 80%, поскольку именно этот спектр отвечает за возникновение эритемы солнечного ожога.
Необходимо учитывать и тот факт, что UV-В сильнее (меньшая длина волны) чем UV-А рассеивается при прохождении через атмосферу, что приводит и к изменению соотношения между этими фракциями с увеличением географической широты (в северных странах) и временем суток.
UV-С (200-280 нм) поглощается озоновым слоем. В случае использования искусственного источника ультрафиолета, он задерживается эпидермисом и не проникает в дерму.

Действие ультрафиолетового излучения на клетку

В действии коротковолнового излучения на живой организм наибольший интерес представляет влияние ультрафиолетовых лучей на биополимеры - белки и нуклеиновые кислоты. Молекулы биополимеров содержат кольцевые группы молекул, содержащие углерод и азот, которые интенсивно поглощают излучение с длиной волны 260...280 нм. Поглощенная энергия может мигрировать по цепи атомов в пределах молекулы без существенной потери, пока не достигнет слабых связей между атомами и не разрушит связь. В течение такого процесса, называемого фотолизом, образуются осколки молекул, оказывающие сильное действие на организм. Так, например, из аминокислоты гистидина образуется гистамин - вещество, расширяющее кровеносные капилляры и увеличивающее их проницаемость. Кроме фотолиза под действием ультрафиолетовых лучей в биополимерах происходит денатурация. При облучении светом определенной длины волны электрический заряд молекул уменьшается, они слипаются и теряют свою активность - ферментную, гормональную, антигенную и пр.
Процессы фотолиза и денатурации белков идут параллельно и независимо друг от друга. Они вызываются разными диапазонами излучения: лучи 280...302 нм вызывают главным образом фотолиз, а 250...265 нм - преимущественно денатурацию. Сочетание этих процессов определяет картину действия на клетку ультрафиолетовых лучей.
Самая чувствительная к действию ультрафиолетовых лучей функция клетки - деление. Облучение в дозе 10(-19) дж/м2 вызывает остановку деления около 90% бактериальных клеток. Но рост и жизнедеятельность клеток при этом не прекращается. Со временем восстанавливается их деление. Чтобы вызвать гибель 90% клеток, подавление синтеза нуклеиновых кислот и белков, образование мутаций, необходимо довести дозу облучения до 10(-18) дж/м2. Ультрафиолетовые лучи вызывают в нуклеиновых кислотах изменения, которые влияют на рост, деление, наследственность клеток, т.е. на основные проявления жизнедеятельности.
Значение механизма действия на нуклеиновую кислоту объясняется тем, что каждая молекула ДНК (дезоксирибонуклеиновой кислоты) уникальна. ДНК - это наследственная память клетки. В ее структуре зашифрована информация о строении и свойствах всех клеточных белков. Если любой белок присутствует в живой клетке в виде десятков и сотен одинаковых молекул, то ДНК хранит информацию об устройстве клетки в целом, о характере и направлении процессов обмена веществ в ней. Поэтому нарушения в структуре ДНК могут оказаться непоправимыми или привести к серьезному нарушению жизнедеятельности.

Действие ультрафиолетового излучения на кожу

Воздействие ультрафиолета на кожу заметно влияет на метаболизм нашего организма. Общеизвестно, что именно УФ-лучи инициируют процесс образования эргокальциферола (витамина Д), необходимого для всасывания кальция в кишечнике и обеспечения нормального развития костного скелета. Кроме того, ультрафиолет активно влияет на синтез мелатонина и серотонина - гормонов, отвечающих за циркадный (суточный) биологический ритм. Исследования немецких ученых показали, что при облучении УФ-лучами сыворотки крови в ней на 7 % увеличивалось содержание серотонина - "гормона бодрости", участвующего в регуляции эмоционального состояния. Его дефицит может приводить к депрессии, колебаниям настроения, сезонным функциональным расстройствам. При этом количество мелатонина, обладающего тормозящим действием на эндокринную и центральную нервную системы, снижалось на 28%. Именно таким двойным эффектом объясняется бодрящее действие весеннего солнца, поднимающего настроение и жизненный тонус.
Действие излучения на эпидермис - наружный поверхностный слой кожи позвоночных животных и человека, состоящий из многослойного плоского эпителия человека, представляет собой воспалительную реакцию называемую эритемой. Первое научное описание эритемы дал в 1889 г. А.Н. Макла-нов (Россия), который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины.
Различают калорическую и ультрафиолетовую эритему. Калорическая эритема обусловлена воздействием видимых и инфракрасных лучей на кожу и прилива к ней крови. Она исчезает почти сразу после прекращения действия облучения.
После прекращения воздействия УФ-облучения, через 2..8 часов появляется покраснение кожи (ультрафиолетовая эритема) одновременно с ощущением жжения. Эритема появляется после скрытого периода, в пределах облученного участка кожи, и сменяется загаром и шелушением. Длительность эритемы имеет продолжительность от 10... 12 часов до 3...4 дней. Покрасневшая кожа горяча на ощупь, чуть болезненна и кажется набухшей, слегка отечной.
По существу эритема представляет собой воспалительную реакцию, ожог кожи. Это особое, асептическое (Асептический - безгнилостный) воспаление. Если доза облучения слишком велика или кожа особенно чувствительна к ним, отечная жидкость, накапливаясь, отслаивает местами наружный покров кожи, образует пузыри. В тяжелых случаях появляются участки некроза (омертвения) эпидермиса. Через несколько дней после исчезновения эритемы кожа темнеет и начинает шелушиться. По мере шелушения слущивается часть клеток, содержащих меланин (Меланин - основной пигмент тела человека; придает цвет коже, волосам, радужной оболочке глаза. Он содержится и в пигментном слое сетчатки глаза, участвует в восприятии света), загар бледнеет. Толщина кожного покрова человека варьирует в зависимости от пола, возраста (у детей и стариков - тоньше) и локализации - в среднем 1..2 мм. Его назначение - защитить организм от повреждений, колебаний температуры, давления.
Основной слой эпидермиса прилегает к собственно коже (дерме), в которой проходят кровеносные сосуды и нервы. В основном слое идет непрерывный процесс деления клеток; более старые вытесняются наружу молодыми клетками и отмирают. Пласты мертвых и отмирающих клеток образуют наружный роговой слой эпидермиса толщиной 0,07...2,5 мм (На ладонях и подошвах, главным образом за счет рогового слоя, эпидермис толще, чем на других участках тела), который непрерывно слущивается снаружи и восстанавливается изнутри.
Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче длина волны излучения, тем меньше их проникающая способность. Лучи короче 310 нм не проникают глубже эпидермиса. Лучи с большей длиной волны достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Таким образом, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе.
Основное количество ультрафиолетовых лучей поглощается в ростковом (основном) слое эпидермиса. Процессы фотолиза и денатурации приводят к гибели шиловидных клеток зародышевого слоя. Активные продукты фотолиза белков вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы.
Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы. Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается.
Эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза. Степень выраженности эритемы и возможность ее образования зависит от состояния нервной системы. На пораженных участках кожи, при обморожении, воспалении нервов эритема либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей. Угнетает образование эритемы сон, алкоголь, физическое и умственное утомление.
Н. Финзен (Дания) впервые применил ультрафиолетовое излучение для лечения ряда болезней в 1899 г. В настоящее время подробно изучены проявления действия разных участков ультрафиолетового излучения на организм. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 297 нм. К лучам с большей или меньшей длиной волны эритемная чувствительность кожи снижается.
С помощью искусственных источников излучения эритему удалось вызвать лучами диапазона 250...255 нм. Лучи с длиной волны 255 нм дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах.
Таким образом, кривая эритемной чувствительности кожи имеет два максимума. Впадина между двумя максимумами обеспечивается экранирующим действием ороговевшего слоя кожи.

Защитные функции организма

В естественных условиях вслед за эритемой развивается пигментация кожи - загар. Спектральный максимум пигментации (340 нм) не совпадает ни с одним из пиков эритемной чувствительности. Поэтому, подбирая источник излучения можно вызвать пигментацию без эритемы и наоборот.
Эритема и пигментация не являются стадиями одного процесса, хотя они и следуют одна за другой. Это проявление разных, связанных друг с другом процессов. В клетках самого нижнего слоя эпидермиса - меланобластах - образуется кожный пигмент меланин. Исходным материалом для образования меланина служат аминокислоты и продукты распада адреналина.
Меланин - не просто пигмент или пассивный защитный экран отгораживающий живые ткани. Молекулы меланина представляют собой огромные молекулы с сетчатой структурой. В звеньях этих молекул связываются и нейтрализуются осколки разрушенных ультрафиолетом молекул, не пропуская их в кровь и внутреннюю среду организма.
Функция загара заключается в защите клеток дермы, расположенных в ней сосудах и нервах от длинноволновых ультрафиолетовых, видимых и инфракрасных лучей, вызывающих перегрев и тепловой удар. Ближние инфракрасные лучи и видимый свет, особенно его длинноволновая, "красная" часть, могут проникать в ткани гораздо глубже, чем ультрафиолетовые лучи, - на глубину 3...4 мм. Гранулы меланина - темно-коричневого, почти черного пигмента - поглощают излучение в широкой области спектра, защищая от перегрева нежные, привыкшие к постоянной температуре внутренние органы.
Оперативный механизм защиты организма от перегрева - прилив крови к коже и расширение кровеносных сосудов. Это приводит к увеличению теплоотдачи посредством излучения и конвекции (Общая поверхность кожного покрова взрослого человека составляет 1,6 м2). Если воздух и окружающие предметы имеют высокую температуру, вступает в действие еще один механизм охлаждения - испарение за счет потоотделения. Эти механизмы терморегуляции предназначены для защиты от воздействия видимых и инфракрасных лучей Солнца.
Потоотделение, наряду с функцией терморегуляции, препятствует воздействию ультрафиолетового излучения на человека. Пот содержит урокановую кислоту, которая поглощает коротковолновое излучение благодаря наличию в ее молекулах бензольного кольца.

Световое голодание (дефицит естественного УФ-облучения)

Ультрафиолетовое излучение поставляет энергию для фотохимических реакций в организме. В нормальных условиях солнечный свет вызывает образование небольшого количества активных продуктов фотолиза, которые оказывают на организм благотворное действие. Ультрафиолетовые лучи в дозах, вызывающих образование эритемы, усиливают работу кроветворных органов, ретикуло-эндоте-лиальную систему (Физиологическая система соединительной ткани, вырабатывающая антитела разрушающие чужеродные организму тела и микробы), барьерные свойства кожного покрова, устраняют аллергию.
Под действием ультрафиолетового излучения в коже человека из стероидных веществ образуется жирорастворимый витамин D. В отличие от других витаминов он может поступать в организм не только с пищей, но и образовываться в нем из провитаминов. Под влиянием ультрафиолетовых лучей с длиной волны 280...313 нм провитамины, содержащиеся в кожной смазке выделяемой сальными железами, превращаются в витамин D и всасываются в организм.
Физиологическая роль витамина D заключается в том, что он способствует усвоению кальция. Кальций входит в состав костей, участвует в свертывании крови, уплотняет клеточные и тканевые мембраны, регулирует активность ферментов. Болезнь, возникающая при недостатке витамина D у детей первых лет жизни, которых заботливые родители прячут от Солнца, называется рахитом.
Кроме естественных источников витамина D используют и искусственные, облучая провитамины ультрафиолетовыми лучами. При использовании искусственных источников ультрафиолетового излучения следует помнить, что лучи короче 270 нм разрушают витамин D. Поэтому с помощью фильтров в световом потоке ультрафиолетовых ламп подавляется коротковолновая часть спектра. Солнечное голодание проявляется в раздражительности, бессоннице, быстрой утомляемости человека. В больших городах, где воздух загрязнен пылью, ультрафиолетовые лучи вызывающие эритему почти не достигают поверхности Земли. Длительная работа в шахтах, машинных отделениях и закрытых заводских цехах, труд ночью, а сон в дневные часы приводят к световому голоданию. Световому голоданию способствует оконное стекло, которое поглощает 90...95% ультрафиолетовых лучей и не пропускает лучи в диапазоне 310...340 нм. Окраска стен также имеет существенное значение. Например, желтая окраска полностью поглощает ультрафиолетовые лучи. Недостаток света, особенно ультрафиолетового излучения, ощущают люди, домашние животные, птицы и комнатные растения в осенний, зимний и весенний периоды.
Восполнить недостаток ультрафиолетовых лучей позволяют лампы, которые наряду с видимым светом излучают ультрафиолетовые лучи в диапазоне длин волн 300...340 нм. Следует иметь в виду, что ошибки при назначении дозы облучения, невнимание к таким вопросам, как спектральный состав ультрафиолетовых ламп, направление излучения и высота размещения ламп, длительность горения ламп, могут вместо пользы принести вред.

Бактерицидное действие ультрафиолетового излучения

Нельзя не отметить и бактерицидную функцию УФ-лучей. В медицинских учреждениях активно пользуются этим свойством для профилактики внутрибольничной инфекции и обеспечения стерильности оперблоков и перевязочных. Воздействие ультрафиолета на клетки бактерий, а именно на молекулы ДНК, и развитие в них дальнейших химических реакций приводит к гибели микроорганизмов.
Загрязнение воздуха пылью, газами, водяными парами оказывает вредное влияние на организм. Ультрафиолетовые лучи Солнца усиливают процесс естественного самоочищения атмосферы от загрязнений, способствуя быстрому окислению пыли, частичек дыма и копоти, уничтожая на пылинках микроорганизмы. Природная способность к самоочищению имеет пределы и при очень сильном загрязнении воздуха оказывается недостаточной.
Ультрафиолетовое излучение с длиной волны 253...267 нм наиболее эффективно уничтожает микроорганизмы. Если принять максимум эффекта за 100%, то активность лучей с длиной волны 290 нм составит 30%, 300 нм - 6%, а лучей лежащих на границе видимого света 400 нм,- 0,01% максимальной.
Микроорганизмы обладают различной чувствительностью к ультрафиолетовым лучам. Дрожжи, плесневые грибки и споры бактерий гораздо устойчивее к их действию, чем вегетативные формы бактерий. Споры отдельных грибков, окруженные толстой и плотной оболочкой, отлично себя чувствуют в высоких слоях атмосферы и, не исключена возможность, что они могут путешествовать даже в космосе.
Чувствительность микроорганизмов к ультрафиолетовым лучам особенно велика в период деления и непосредственно перед ним. Кривые бактерицидного эффекта, торможения и роста клеток практически совпадают с кривой поглощения нуклеиновыми кислотами. Следовательно, денатурация и фотолиз нуклеиновых кислот приводит к прекращению деления и роста клеток микроорганизмов, а в больших дозах к их гибели.
Бактерицидные свойства ультрафиолетовых лучей используются для дезинфекции воздуха, инструмента, посуды, с их помощью увеличивают сроки хранения пищевых продуктов, обеззараживают питьевую воду, инактивируют вирусы при приготовлении вакцин.

Негативное воздействие ультрафиолетового облучения

Хорошо известен и ряд негативных эффектов, возникающих при воздействии УФ-излучения на организм человека, которые могут приводить к ряду серьезных структурных и функциональных повреждений кожи. Как известно, эти повреждения можно разделить на:
  • острые, вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог или острые фотодерматозы). Они происходят преимущественно за счет лучей УФ-В, энергия которых многократно превосходит энергию лучей УФ-А. Солнечная радиация распределяется неравномерно: 70% дозы лучей УФ-В, получаемых человеком, приходится на лето и полуденное время дня, когда лучи падают почти отвесно, а не скользят по касательной - в этих условиях поглощается максимальное количество излучения. Такие повреждения вызваны непосредственным действием УФ-излучения на хромофоры - именно эти молекулы избирательно поглощают УФ-лучи.
  • отсроченные, вызванные длительным облучением умеренными (субэритемными) дозами (например, к таким повреждениям относятся фотостарение, новообразования кожи, некоторые фотодерматиты). Они возникают преимущественно за счет лучей спектра А, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года. Как правило, этот тип повреждений - результат воздействия продуктов свободнорадикальных реакций (напомним, что свободные радикалы - это высокореактивные молекулы, активно взаимодействующие с белками, липидами и генетическим материалом клеток).
    Роль УФ-лучей спектра А в этиологии фотостарения доказана работами многих зарубежных и российских ученых, но тем не менее, механизмы фотостарения продолжают изучаться с использованием современной научно-технической базы, клеточной инженерии, биохимии и методов клеточной функциональной диагностики.
    Слизистая оболочка глаза - коньюктива - не имеет защитного рогового слоя, поэтому она более чувствительна к уф-облучению, чем кожа. Резь в глазу, краснота, слезотечение, частичная слепота появляются в результате дегенерации и гибели клеток коньюктивы и роговицы. Клетки при этом становятся непрозрачными. Длинноволновые ультрафиолетовые лучи, достигая хрусталика, в больших дозах могут вызвать его помутнение - катаракту.

    Искусственные источники УФ-излучения в медицине

    Бактерицидные лампы
    В качестве источников УФ-излучения используются разрядные лампы, у которых в процессе электрического разряда генерируется излучение, содержащие в своем составе диапазон длин волн 205-315 нм (остальная область спектра излучения играет второстепенную роль). К таким лампам относятся ртутные лампы низкого и высокого давления, а также ксеноновые импульсные лампы.
    Ртутные лампы низкого давления конструктивно и по электрическим параметрам практически ни чем не отличаются от обычных осветительных люминесцентных ламп, за исключением того, что их колба выполнена из специального кварцевого или увиолевого стекла с высоким коэффициентом пропускания УФ-излучения, на внутренней поверхности которой не нанесен слой люминофора. Эти лампы выпускаются в широком диапазоне мощностей от 8 до 60 Вт. Основное достоинство ртутных ламп низкого давления состоит в том, что более 60 % излучения приходится на линию с длиной волны 254 нм, лежащей в спектральной области максимального бактерицидного действия. Они имеют большой срок службы 5.000-10.000 ч и мгновенную способность к работе после их зажигания.
    Колба ртутно-кварцевых ламп высокого давления выполнена из кварцевого стекла. Достоинство этих ламп состоит в том, что они имеют при небольших габаритах большую единичную мощность от 100 до 1.000 Вт, что позволяет уменьшить число ламп в помещении, но обладают низкой бактерицидной отдачей и малым сроком службы 500-1.000 ч. Кроме того, нормальный режим горения наступает через 5-10 минут после их зажигания.
    Существенным недостатком непрерывных излучательных ламп является наличие риска загрязнения парами ртути окружающей среды при разрушении лампы. В случае нарушения целостности бактерицидных ламп и попадания ртути в помещение должна быть проведена тщательная демеркуризация загрязненного помещения.
    В последние годы появилось новое поколение излучателей - короткоимпульсные, обладающие гораздо большей биоцидной активностью. Принцип их действия основан на высокоинтенсивном импульсном облучении воздуха и поверхностей УФ-излучением сплошного спектра. Импульсное излучение получают при помощи ксеноновых ламп, а также с помощью лазеров. Данные об отличии биоцидного действия импульсного УФ-излучения от такового при традиционном УФ-излучении на сегодняшний день отсутствуют.
    Преимущество ксеноновых импульсных ламп обусловлено более высокой бактерицидной активностью и меньшим временем экспозиции. Достоинством ксеноновых ламп является также то, что при случайном их разрушении окружающая среда не загрязняется парами ртути. Основными недостатками этих ламп, сдерживающими их широкое применение, является необходимость использования для их работы высоковольтной, сложной и дорогостоящей аппаратуры, а также ограниченный ресурс излучателя (в среднем1-1,5 года).
    Бактерицидные лампы разделяются на озонные и безозонные .
    У озонных ламп в спектре излучения присутствует спектральная линия с длиной волны 185 нм, которая в результате взаимодействия с молекулами кислорода образует озон в воздушной среде. Высокие концентрации озона могут оказать неблагоприятное воздействие на здоровье людей. Использование этих ламп требует контроля содержания озона в воздушной среде и тщательного проветривания помещения.
    Для исключения возможности генерации озона разработаны так называемые бактерицидные "безозонные" лампы. У таких ламп за счет изготовления колбы из специального материала (кварцевое стекло с покрытием) или её конструкции исключается выход излучения линии 185 нм.
    Бактерицидные лампы, отслужившие свой срок службы или вышедшие из строя, должны храниться запакованными в отдельном помещении и требуют специальной утилизации согласно требованиям соответствующих нормативных документов.

    Бактерицидные облучатели.
    Бактерицидный облучатель-это электротехническое устройство, в котором размещены: бактерицидная лампа, отражатель и другие вспомогательные элементы, а также приспособления для его крепления. Бактерицидные облучатели перераспределяют поток излучения в окружающее пространство в заданном направлении и подразделяются на две группы - открытые и закрытые.
    Открытые облучатели используют прямой бактерицидный поток от ламп и отражателя (или без него), который охватывает широкую зону пространства вокруг них. Устанавливаются на потолке или стене. Облучатели, устанавливаемые в дверных проемах, называются барьерными облучателями или ультрафиолетовыми завесами, у которых бактерицидный поток ограничен небольшим телесным углом.
    Особое место занимают открытые комбинированные облучатели. В этих облучателях, за счет поворотного экрана, бактерицидный поток от ламп можно направлять в верхнюю или нижнюю зону пространства. Однако эффективность таких устройств значительно ниже из-за изменения длины волны при отражении и некоторых других факторов. При использовании комбинированных облучателей бактерицидный поток от экранированных ламп должен направляться в верхнюю зону помещения таким образом, чтобы исключить выход прямого потока от лампы или отражателя в нижнюю зону. При этом облученность от отраженных потоков от потолка и стен на условной поверхности на высоте 1,5 м от пола не должна превышать 0,001 Вт/м2.
    У закрытых облучателей (рециркуляторов) бактерицидный поток от ламп распределяется в ограниченном небольшом замкнутом пространстве и не имеет выхода наружу, при этом обеззараживание воздуха осуществляется в процессе его прокачки через вентиляционные отверстия рециркулятора. При применении приточно-вытяжной вентиляции бактерицидные лампы размещаются в выходной камере. Скорость воздушного потока обеспечивается либо естественной конвекцией, либо принудительно с помощью вентилятора. Облучатели закрытого типа (рециркуляторы) должны размещаться в помещении на стенах по ходу основных потоков воздуха (в частности, вблизи отопительных приборов) на высоте не менее 2 м от пола.
    Согласно перечню типовых помещений, разбитых по категориям (ГОСТ), рекомендуется помещения I и II категорий оборудовать как закрытыми облучателями (или приточно-вытяжной вентиляцией), так и открытыми или комбинированными - при их включении в отсутствии людей.
    В помещениях для детей и легочных больных рекомендуется применять облучатели с безозонными лампами. Искусственное ультрафиолетовое облучение, даже непрямое, противопоказано детям с активной формой туберкулеза, нефрозо-нефрита, лихорадочным состоянием и резким истощением.
    Использование ультрафиолетовых бактерицидных установок требует строгого выполнения мер безопасности, исключающих возможное вредное воздействие на человека ультрафиолетового бактерицидного излучения, озона и паров ртути.

    Основные меры безопасности и противопоказания к использованию терапевтического УФ-облучения.

    Перед использованием УФ-облучения от искусственных источников необходимо посетить врача с целью подбора и установления минимальной эритемной дозы (МЭД), которая является сугубо индивидуальным параметром для каждого человека.
    Поскольку индивидуальная чувствительность людей широко варьируется, рекомендуется продолжительность первого сеанса сократить вдвое по сравнению с рекомендованным временем, с тем чтобы установить кожную реакцию пользователя. Если после первого сеанса обнаружится какая-либо неблагоприятная реакция, дальнейшее использование УФ-облучения не рекомендуется.
    Регулярное облучение в течение длительного времени (год и больше) не должно превышать 2 сеансов в неделю, причем в год может быть не более 30 сеансов или 30 минимальных эритемных доз (МЭД), какой бы малой ни была эритемно-эффективная облученность. Рекомендуется иногда прерывать регулярные сеансы облучения.
    Терапевтическое облучение необходимо проводить с обязательным использованием надежных защитных очков для глаз.
    Кожа и глаза любого человека могут стать "мишенью" для ультрафиолета. Считается, что люди со светлой кожей более восприимчивы к повреждению, однако и смуглые, темнокожие люди тоже не могут чувствовать себя в полной безопасности.

    Очень осторожным с естественным и искусственным УФ-облучением всего тела следует быть следующим категориям людей:

  • Гинекологическим больным (ультрафиолет может усилить воспалительные явления).
  • Имеющих большое количество родимых пятен на теле, или участки скопления родимых пятен, или большие родимые пятна
  • Лечившимся от рака кожи в прошлом
  • Работающим в течение недели в помещении, а затем длительно загорающим в выходные дни
  • Живущим или отдыхающим в тропиках и субтропиках
  • Имеющим веснушки или ожоги
  • Альбиносам, блондинам, русоволосым и рыжеволосым людям
  • Имеющим среди близких родственников больных раком кожи, особенно меланомой
  • Живущим или отдыхающим в горах (каждые 1000 метров над уровнем моря прибавляют 4% - 5% солнечной активности)
  • Длительно пребывающим, в силу различных причин, на свежем воздухе
  • Перенесшим трансплантацию какого-либо органа
  • Страдающим некоторыми хроническими заболеваниями, например, системной красной волчанкой
  • Принимающим следующие лекарственные препараты: Антибактериальные (тетрациклины, сульфаниламиды и некоторые другие) Нестероидные противовоспалительные средства, например, напроксен Фенотиазиды, используемые в качестве успокаивающих и противотошнотных средств Трициклические антидепрессанты Мочегонные из группы тиазидов, например, гипотиазид Препараты сульфомочевины, таблетки, снижающие глюкозу в крови Иммунодепрессанты
  • Особенно опасно длительное неконтролируемое воздействие ультрафиолета для детей и подростков, поскольку может стать причиной развития во взрослом возрасте меланомы, наиболее быстро прогрессирующего рака кожи.

    Летом мы проводим больше времени на открытом воздухе, одновременно надеваем меньше одежды, кожа больше контактирует с солнечным излучением, что увеличивает риск ее повреждения. Воздействие на кожу ультрафиолетового излучения - основная причина развития злокачественных новообразований кожи, наиболее злокачественным из которых является меланома. За последние 10 лет заболеваемость меланомой в России повысилась с 4,5 до 6,1 на 100 тыс. населения. Ежегодно эта опухоль поражает 8-9 тыс. россиян.

    Предотвратить меланому можно не всегда, но, в наших силах значительно снизить риски развития этого заболевания.

    Защита от повреждающего воздействия ультрафиолета необходима не только во время пляжного отдыха. Защита необходима во всех ситуациях, когда вы проводите много времени на открытом пространстве, особенно, в часы максимальной активности солнца (с 10 до 16), например, садово-огородные работы, катание на лодке, разные виды спорта, рыбалка, походы, стрижка газона, прогулки по городу и в парках, катание на велосипеде.

    Защита от воздействия ультрафиолетового излучения.

    Доказана прямая связь между воздействием солнечного излучения и частотой развития злокачественных новообразований, в том числе меланомы. Сейчас можно достаточно точно оценить интенсивность солнечного излучения и опасность его повреждающего воздействия на кожу в определенном месте в определенное время. Для этого ориентируются на значения УФ индекса (индекс ультрафиолетового излучения), который имеет значения по шкале от 1 до 11+ и показывает силу УФ излучения в конкретном месте. Чем выше значение УФ-индекса, тем больше вероятность солнечного ожога, повреждения кожи и, в конечном счете, появления различных злокачественных опухолей кожи.

    • Защита кожи одеждой.

    Если Вы планируете, долгое время находиться на открытом солнце, защитите кожу тела одеждой. Распространено ошибочное мнение, что любая одежда надежно предохраняет кожу от контакта с ультрафиолетом. Однако, это не так; важно обращать внимание как на непосредственно фасон одежды, так и на характеристики ткани, из которой она изготовлена.

    Выбирайте максимально закрывающую тело одежду: брюки и юбки длиной до щиколоток, футболки и блузки с длинными рукавами.

    Окрашенная, особенно натуральными пигментами (зеленый, коричневый, бежевый), или темная одежда лучше защищает от солнечных лучей, нежели белая, однако, она более нагревается, увеличивая тепловую нагрузку на тело. Двухслойные материалы удваивают свои защитные свойства. Предпочтительна одежда, изготовленная из плотной ткани.

    Хорошо задерживают ультрафиолет ткани из хлопка, льна, конопли, а вот ткани из натурального шелка не защищают от солнечного излучения. Максимально задерживает ультрафиолет полиэстер.

    Защитите кожу головы, надев головной убор (шляпа, косынка). Помните о коже ушей, их защитит тень широкополой шляпы. Кожа шеи особенно нуждается в защите, это наименее защищенный участок тела, выбирайте одежду с воротником, который можно поднять, либо повяжите на шею шарф, косынку.

    Помните, что одежда не может дать 100% защиты, если через ткань на просвет виден свет, значит, она пропускает УФ.

    • Использование солнцезащитных средств для наружного применения.

    Используйте солнцезащитные продукты с коэффициентом защиты от солнца (SPF) от 30 и выше. Довольно распространено мнение, что использовать солнцезащитные средства следует только на пляже. Однако солнце воздействует на нас круглый год, а в период подъёма сезонной активности повреждающее воздействие ультрафиолета нисколько не меньше в городе, нежели на пляже.

    В часы максимальной солнечной активности с 10.00 до 16.00) все открытые участки кожи необходимо защищать, нанося солнцезащитное средство. На пляже - на все тело, в городе или на прогулке - на лицо, губы, уши, шею, руки. Большинство людей используют солнцезащитное средство неправильно, используя его слишком экономно. Рекомендованное количество солнцезащитного средства на единицу поверхности кожи - 2 мг средства SPF на 1 см кожи. Для однократного нанесения солнцезащитного средства на кожу взрослого человека требуется не менее 30 мл средства.

    Наносите защитное средство даже в пасмурные дни, когда солнце скрыто за облаками, так как облачность не препятствует проникновению УФ излучения.

    Прежде чем нанести солнцезащитное средство, обязательно ознакомьтесь с прилагающейся инструкцией, где указывается с какой частотой надо повторять его нанесение. В среднем, необходимо повторять обработку кожи каждые 2 часа нахождения на солнце. Многие средства не являются влагостойкими и требуют повторного нанесения после каждого погружения в воду; усиленное потоотделение так же может сократить время эффективной защиты. Немало поклонников пляжного отдыха находят определенное удовольствие в экстремально длительном пассивном пребывании на солнце, они часами усердно «загорают», в полной уверенности, что приносят пользу своему организму, «оздоравливаются». Эта очень опасная практика, особенно любима людьми среднего и пожилого возраста. Таким отдыхающим надо помнить, что даже грамотное использование солнцезащитных средств не гарантирует абсолютной защиты кожи от повреждений, время пребывания на открытом солнце должно быть строго ограничено (не более 2 часов.).

    • Нахождение в тени в часы активного солнца.

    Ограничение длительного пребывания на открытом солнце - это еще один способ избежать вредного воздействия УФ. Особенно это актуально в середине дня, с 10.00 и 16.00, когда УФ излучение чрезмерно активно. Понять интенсивность солнечного излучения помогает простой тест: если тень человека короче роста самого человека, то солнце активно, и необходимо принять защитные меры. Нахождение в тени пляжного зонтика не является полноценной защитой, так как до 84% ультрафиолетовых лучей отражаются от песка и беспрепятственно достигают кожи.

    • Использование солнцезащитных очков.

    Уделяя внимание защите кожи, не забывайте про глаза. Меланома глаз встречается не реже меланомы кожи. Снизить риск ее развития можно только с помощью использования специальных солнцезащитных очков. Лучше использовать очки большого диаметра, стекла которых задерживают не менее 98% ультрафиолетовых лучей. Приобретайте очки в специализированных магазинах оптики, убедитесь, что их стекла поглощают УФ на длине волны до 400 нм, это значит, что очки блокируют, по крайней мере, 98% УФ лучей. При отсутствии подобных указаний на ярлыке, очки, скорее всего, не обеспечат достаточную защиту для глаз.

    Защищая себя от повреждающего воздействия ультрафиолетового излучения Вы продлеваете жизнь.