Кроветворение. Органы кроветворения. Регуляция кроветворения. Специфические и неспецифические факторы эритропоэза. Регуляция кроветворения Кроветворение в норме его регуляция

В этой части речь идет о разрушении эритроцитов, об образовании эритроцитов, о разрушении и образовании лейкоцитов, о нервной регуляции кроветворения, о гуморальной регуляции кроветворения. На схеме созревание форменных элементов крови.

Разрушение эритроцита.

Клетки крови постоянно разрушаются в организме. Особенно быстрой смене подвергаются эритроциты. Вычислено, что в сутки разрушается около 200 млрд. эритроцитов. Их разрушение происходит во многих органах, но в особо большом количестве - в печени и селезенке. Эритроциты разрушаются путем разделения на все более мелкие и мелкие участки - фрагментации, гемолиза и путем эритрофагоцитоза, суть которого заключается в захватывании и переваривании эритроцитов особыми клетками - эритрофагоцитами. При разрушении эритроцитов образуется желчный пигмент билирубин, который после некоторых превращений удаляется из организма с мочой и калом. Железо, освобождающееся при распаде эритроцитов (около 22 мг в сутки), используется для построения новых молекул гемоглобина.

Образование эритроцитов.

У взрослого человека формирование эритроцитов - эритропоэз - происходит в красном костном мозге (см. схему, щелкните мышью по изображению для увеличения). Недифференцированная клетка его - гемоцитобласт - превращается в родоначальную клетку красной крови - эритробласт, из которой образуется нормобласт, дающий начало ретикулоциту - предшественнику зрелого эритроцита. Уже в ретикулоците отсутствует ядро. Превращение ретикулоцита в эритроцит заканчивается в крови.

Разрушение и образование лейкоцитов.

Все лейкоциты после некоторого периода циркуляции их в крови покидают ее и переходят в ткани, откуда обратно в кровь не возвращаются. Находясь в тканях и выполняя свою фагоцитарную функцию, они гибнут.

Зернистые лейкоциты (гранулоциты) образуются в косном мозге из миелобласта, который дифференцируется из гемоцитобласта. Миелобласт до превращения его в зрелый лейкоцит проходит через стадии промиелоцита, миелоцита, метамиелоцита и палочкоядерного нейтрофила (см. схему, щелкните мышью по изображению для увеличения).

Незернистые лейкоциты (агранулоциты) также дифференцируются из гемоцитобласта.

Лимфоциты образуются в зобной железе и лимфатических узлах. Родоначальной клеткой их является лимфобласт, превращающийся в пролимфоцит, дающий уже зрелый лимфоцит.

Моноциты образуются не только из гемоцитобласта, но и из ретикулярных клеток печени, селезенки, лимфатических узлов. Первичная его клетка - монобласт - превращается в промоноцит, а последний - в моноцит.

Исходной клеткой, из которой формируются тромбоциты, является мегакариобласт костного мозга. Непосредственным предшественником тромбоцита является мегакариоцит - крупная клетка, имеющая ядро. От ее цитоплазмы отшнуровываются тромбоциты.

Нервная регуляция кроветворения.

Еще в позапрошлом столетии С.П.Боткин - русский клиницист - поднял вопрос о ведущей роли нервной системы в регуляции кроветворения. Боткиным описаны случаи внезапного развития анемии после психического потрясения. В дальнейшем последовало бесчисленное множество работа, свидетельствующих, что при всяком воздействии на центральную нервную систему меняется картина крови. Так, например, введение различных веществ в подоболочные пространства мозга, закрытые и открытые травмы черепа, введение воздуха в желудочки мозга, опухоли мозга и целый ряд других нарушений функций нервной системы неизбежно сопровождаются изменениями состава крови. Зависимость периферического состава крови от деятельности нервной системы стала совершенно очевидной после установления В.Н.Черниговским существования во всех кроветворных и кроверазрушающих органах рецепторов. Они передают информацию в центральную нервную систему о функциональном состоянии этих органов. В соответствии с характером поступающей информации центральная нервная система посылает импульсы к кроветворным и кроверазрушающим органам, изменяя их деятельность в соответствии с требованиями конкретной ситуации в организме.

Предположение Боткина и Захарьина о влиянии функционального состояния коры головного мозга на деятельность кроветворных и кроверазрушающих органов является теперь экспериментально установленным фактом. Образование условных рефлексов, выработка различных видов торможения, любое нарушение динамики корковых процессов неизбежно сопровождаются изменениями состава крови.

Гуморальная регуляция кроветворения.

Гуморальная регуляция образования всех клеток крови осуществляется гемопэтинами. Их делят на эритропоэтины, лейкопоэтины и тромбопоэтины.

Эритропоэтины - вещества белково-углеводной природы, которые стимулируют образование эритроцитов. Эритропоэтины воздействуют непосредственно в костный мозг, стимулируя дифференциацию гемоцитобласта в эритробласт. Установлено, что под их влиянием усиливается включение железа в эритробласты, увеличивается число их митозов. Предполагают, что эритропоэтины образуются в почках. Недостаток кислорода в среде является стимулятором образования эритропоэтинов.

Лейкопоэтины стимулируют образование лейкоцитов путем направленной дифференциации гемоцитобласта, усиления митотической активности лимфобластов, ускорения их созревания и выхода в кровь.

Тромбоцитопоэтины наименее изучены. Известно лишь, что они стимулируют образование тромбоцитов.

В регуляции кроветворения существенное значение имеют витамины. Специфическое действие на формирование эритроцитов оказывают витамин В 12 и фолиевая кислота. Витамин В 12 в желудке образует комплекс с внутренним фактором Кастла, который секретируется главными железами желудка. Внутренний фактор необходим для транспорта витамина В 12 через мембрану клеток слизистой оболочки тонкой кишки. После перехода этого комплекса через слизистую он распадается и витамин В 12 , попадая в кровь, связывается с ее белками и переносится ими в печень, почки и сердце - органы, являющиеся депо этого витамина. Всасывание витамина В 12 происходит на всем протяжении тонкого кишечника, но больше всего - в подвздошной кишке. Фолиевая кислота всасывается также в током кишечнике. В печени она под влиянием витамина В 12 и аскорбиновой кислоты превращается соединение, активирующее эритропоэз. Витамин В 12 и фолиевая кислота стимулируют синтез глобина.

Витамин С необходим для всасывания в кишечнике железа. Этот процесс усиливается под его влиянием В 8-10 раз. Витамин В 6 способствует синтезу гема, витамин В 2 - построению мембраны эритроцита, витамин В 15 необходим для формирования лейкоцитов.

Особое значение для кроветворения имеют железо и кобальт. Железо необходимо для построения гемоглобина. Кобальт стимулирует образование эритропоэтинов, так как он входит в состав витамина В 12. Образование клеток крови стимулируется также нуклеиновыми кислотами, образующимися при распаде эритроцитов и лейкоцитов. Для нормальной функции кроветворения важно полноценное белковое питание. Голодание сопровождается уменьшением митотической активности клеток костного мозга.

Уменьшение количества эритроцитов носит название анемии, количества лейкоцитов - лейкопении и тромбоцитов - тромбоцитопении. Изучение механизма формирования клеток крови, механизма регуляции кроветворения и кроверазрушения позволило создать множество различных лекарственных препаратов, которые восстанавливают нарушенную функцию кроветворных органов.

Кроветворение (гемоцитопоэз) - это сложный, многостадийный процесс образования, развития и созревания клеток крови. Во время внутриутробного развития универсальную кроветворную функцию выполняет желточный мешок, печень, костный мозг, селезенка. В постнатальный (после рождения) период кроветворная функция печени и селезенки утрачивается и основным кроветворным органом остается красный костный мозг. Считается, что родоначальником всех клеток крови является стволовая клетка костного мозга, дающая начало другим клеткам крови.

Гуморальным регулятором эритропоэза является эритропоэтины, вырабатываемые в почках, печени, селезенке. Синтез и секреция эритропоэтинов зависит от уровня оксигенации почек. При всех случаях дефицита кислорода в тканях (гипоксия) и в крови (гипоксемия) увеличивается образование эритропоэтинов. Адренокортикотропный, соматотропный гормоны гипофиза, тироксин, мужские половые гормоны (андрогены) активируют эритропоэз, а женские половые гормоны - тормозят.

Для образования эритроцитов необходимо поступление в организм витамина В 12 , фолиевой кислоты, витаминов В 6 , С, Е, элементов железа, меди, кобальта, марганца, которые составляют внешний фактор эритропоэза. Наряду с этим важную роль играет и так называемый внутренний фактор Кэсла, образующийся в слизистой оболочке желудка, который необходим для всасывания витамина В 12 .

В регуляции лейкоцитопоэза, обеспечивающего поддержание на необходимом уровне общего количества лейкоцитов и отдельных его форм, участвуют вещества гормональной природы - лейкопоэтины. Предполагают, что для каждого ряда лейкоцитов возможно наличие своих специфических лейкопоэтинов, образующихся в различных органах (легких, печени, селезенке и др.). Лейкоцитопоэз стимулируют нуклеиновые кислоты, продукты распада тканей и самих лейкоцитов.

Адренотропный и соматотропный гормоны гипофиза повышают количество нейтрофилов, но уменьшают число эозинофилов. Наличие в кроветворных органах интерорецепторов служит несомненным доказательством влияния нервной системы на процессы кроветворения. Имеются данные по влиянию блуждающего и симпатических нервов на перераспределение лейкоцитов в разных участках сосудистого русла животных. Все это свидетельствует, что кроветворение находится под контролем нервно-гуморального механизма регуляции.

Контрольные вопросы: 1.Понятие о системе крови. 2. Основные функции крови. 3.Плазма и сыворотка крови. 4.Физико-химические свойства крови (вязкость, плотность, реакция, осмотическое и онкотическое давление). 5.Эритроциты, их строение и функции. 6. СОЭ, Гемоглобин. Соединение гемоглобина с разными газами. 7.Лейкоциты, их виды, функции. 8.Лейкограмма свертывающая и противосвертывающая система крови.

Лейкоциты образуются в костном мозге и в лимфоретикулярной системе (лимфоциты, система моноцитов-макрофагов). К существенным элементам эритропоэза относятся также железо, витамин В 12 и фолиевая кислота. Важным триггером эритропоэза является эритропоэтин (ЭПО), который образуется в основном в почках и умножается при нехватке кислорода (например, анемии, сердечной/легочной недостаточности). Время развития одного эритроцита составляет примерно 1-2 недели, но благодаря ЭПО может значительно сокращаться.

Кроветворными органами у взрослого являются в основном костный мозг, лимфатические узлы, селезенка. Костномозговое (миэлоидное) кроветворение дает начало:

  1. через соответствующих миэлоцитов зернистым лейкоцитам-гранулоцитам: нейтрофилам, эозинофилам и базофилам;
  2. через нормобластов-эритроцитам;
  3. через мегакариоцитов-кровяным пластинкам-тромбоцитам.

Лимфоциты образуются из лимфобластов в центрах размножения лимфатических узлов и фолликулов селезенки (единичные фолликулы имеются и в костном мозгу).

Моноциты происходят из клеток ретикуло-эндотелиальной системы, разбросанных в ряде органов (селезенка, лимфатические узлы, костный мозг и т. д.).

Эти три системы у взрослого обособлены, т. е. отсутствует возможность перехода элементов одной группы в другие, и зрелые элементы органов кроветворения и периферической крови являются клетками, высокоди-ференцированными в различных направлениях; в патологии часто поражается избирательно или преимущественно только одна система.

В эмбриональном периоде все клетки крови имеют общую родоначальную недифференцированную мезенхимную клетку, развивающуюся через ретикулярную клетку. Эта возможность дифференцированного кроветворения за счет ретикулярных клеток, играющих роль «глубокого резерва кроветворения», сохраняется у взрослых, например, при внекостномозго-вом образовании миэлоидных элементов в патологических условиях. Ретикуло-эндотелиальные элементы, как «береговые клетки» крови, так и тканевые (гистиоциты), отличаются значительной мультипотентностью (способностью развиваться в различных направлениях) и при пролиферативных воспалениях, системных гиперплазиях и т. д. Схема кроветворения в современном представлении исходит из унитарной теории кроветворения отечественных ученых (Усков, Образцов, Максимов), принятой ведущими советскими гематологами (Крюков и др.), и может быть представлена в следующем виде. Одноядерная клетка-гемоцитобласт дает начало всем рядам форменных элементов крови (Максимов отождествлял с одноядерной мезенхимной клеткой и малый лимфоцит). При повышенном запросе ретикулярная клетка дает начало тем же рядам кроветворения.

Деятельный красный костный мозг

Деятельный красный костный мозг у взрослого ограничен эпифизами длинных костей и плоскими костями-черепом, грудиной, ребрами и позвонками. В диафизах длинных костей сохраняется недеятельный жировой (желтый) костный мозг, при тяжелых анемиях и лейкемиях превращающийся в активный.

У эмбриона костномозговое кроветворение возникает с III месяца, проходя перед тем печеночную, а позднее и селезеночную фазу; равным образом у взрослого миэлоидное кроветворение, в том числе образование эритроцитов в патологических условиях, прежде всего распространяется на весь костный мозг, а в дальнейшем на те органы (селезенку, печень, лимфатические узлы), которые и в утробной жизни являются кроветворными. Красный костный мозг взрослого представляет чрезвычайно важный, ввиду его постоянно продолжающейся функции, орган, хотя и разбросанный отдельными очагами, но в сумме даже превышающий вес наиболее крупной железы-печени (вес всего красного костного мозга у взрослого свыше 2 кг). Большую часть активной костномозговой ткани составляет лейкобластический росток-очаги образования-через стадию промиэлоцитов, миэлоцитов, юных-палочкоядерных и сегментированных зрелых гранулоцитов, постоянно выплывающих в кровь и богатых ферментами, фагоцитирующих в тканях, выделяющихся с секретом желез, с продуктами воспаления, в гною и быстро повсеместно разрушающихся. Таким образом, относительно небольшое, особенно по сравнению с числом эритроцитов, количество лейкоцитов периферической крови (всего 5 000-8 000в 1 мм 3 в норме) объясняется их быстрым разрушением, быстрой сменой в организме.

Эритробластический росток

Эритробластический росток составляет около 1/5 всей активной костномозговой ткани1; он представлен эритробластами, нормобластами различной степени зрелости и обеспечивает нормальное число эритроцитов периферической крови-около 4 500 000-5 000 000 в 1 мм 3 .

Эритроциты костного мозга, уже лишившиеся ядра, сохраняют еще в большинстве сетчатые включения как признак незрелости протоплазмы, т. е. являются ретикулоцитами; поступающие же в норме в периферическую кровь эритроциты являются перезревшими клетками, не поглощающими кислорода и тем лучше выполняющими функцию транспорта кровью кислорода, связанного с гемоглобином эритроцитов. Индивидуальный эритроцит сохраняется в крови, как полагают, около 2-3 месяцев и, отмирая, разрушается главным образом в селезенке. Следовательно, при полном прекращении выработки новых эритроцитов костным мозгом, при параличе эритропоэтической его функции уже к концу этого срока эритроциты почти полностью исчезают в периферической крови, что и имеет место в клинике при острой апластической анемии.

У плода до 4 месяцев сохраняются мегалобласты, обнаруживаемые и в крови: мегалобластическое кроветворение замещается эритронор-мобластическим только при дальнейшей дифференцировке функции печени, доставляющей в костный мозг антианемическое начало.

Признают, что нормальное вызревание эритроцитов связано прежде всего:

  1. с доставкой антианемического вещества, обеспечивающего нормальную структуру ядра и всей клетки, но не участвующего в гемоглобино-образовании, почему недостаток антианемического вещества у плода или у взрослых больных со злокачественным малокровием приводит к образованию мегалобластов и мегалоцитов, богатых гемоглобином;
  2. с доставкой железа, обеспечивающего дозревание гемоглобина, почему недостаток железа и приводит к образованию нормальных по структуре ядра и всей клетки нормобластов и далее нормоцитов, однако бледно окрашенных, почти бесцветных в центре-кольцевидных (песаровидных) эритроцитов.

Кровяные пластинки (тромбоциты)

Кровяные пластинки (тромбоциты) представляют отшнурования протоплазмы особых клеток (мегакариоцитов). Пластинки лишены, как и эритроциты, ядра, чрезвычайно нестойки в периферической крови, легко склеиваются в пластинчатый тромб; при повреждении сосудов они разрушаются и освобождают при этом вещества, которые способствуют свертыванию крови.

В патологических условиях в костном мозгу и периферической крови могут происходить значительные изменения качественного и количественного характера в отношении как костномозговых форм лейкоцитов, так и эритроцитов, и тромбоцитов.

При апластической анемии костномозговое кроветворение прекращается, и активный костный мозг замещается недеятельным слизистым. При агранулоцитозе поражается только лейкобластический росток костного мозга. Напротив, при лейкоцитозах костномозговое кроветворение увеличивается за счет нарастания числа промиэлоцитов и миэлоцитов нейтрофильных, эозинофильных; может быть увеличено число патологических форм раздражения-плазматических клеток или дегенеративных нейтрофилов с крупной токсической зернистостью и т. д. При лейкемиях резко увеличивается также число материнских клеток-недифференцированных миэлобластов. (При гемоцитобластических и лимфатических лейкемиях разрастание гемоцитобластов и лимфобластов происходит и в костном мозгу.) При тромбопенической пурпуре мегакариоциты в костном мозгу неполноценны, хотя и могут быть увеличены в числе.

При регенеративных анемиях эритробластический росток представлен большим числом нормобластов или эритробластов, а в редких случаях, преимущественно при злокачественном малокровии в периоды ухудшения заболевания, и не свойственными взрослому организму мегалобластами.

Распад и новообразование эритроцитов

Важно помнить, что нормальное содержание зрелых эритроцитов в периферической крови удерживается, несмотря на постоянный распад значительного их числа, благодаря непрекращающемуся активному костномозговому кроветворению; весьма существенно также правильно оценивать степень повышения распада крови (гемолиза) и активность кроветворения и в патологических условиях, прежде всего при различного рода анемиях.

О размерах распада крови (гемолиза) судят прежде всего по содержанию в крови билирубина, образующегося в селезенке и других богатых ретикуло-эндотелием органах за счет гемоглобина эритроцитов (видимая уже на глаз гемолитическая желтуха при значительном распаде эритроцитов), далее-по содержанию билирубина в дуоденальном содержимом и по содержанию уробилина (стеркобилина) в испражнениях. Количество выделенного за сутки уробилина (стеркобилина)-конечного продукта гемоглобинового обмена («пигментного» обмена)-представляет меру распада крови за тот же период [из 100,0 гемоглобина образуется около 4,0 уробилина) (стеркобилина) и приблизительно такое же количество билирубина]. При повышенном распаде крови повышено обычно и содержание железа в плазме крови; анатомически можно обнаружить гемосидероз органов; часто увеличена селезенка. Менее изучены изменения обмена порфиринов.

Об активности эритропоэтической функции костного мозга судят прежде всего по морфологическому составу периферической крови-по увеличению числа ретикулоцитов до 10-20-50% всех эритроцитов (в норме их не более 1%); по увеличению числа полихроматофилов и базофильно пунктированных эритроцитов (однако последние следует рассматривать скорее как продукт патологической дегенеративной регенерации); по появлению в периферической крови ядерных эритроцитов-нормобластов, реже эритробластов. Эритробластоз особенно свойствен регенеративным анемиям детского возраста, а также злокачественному малокровию в период улучшения под влиянием печеночной терапии, лейкозам, карциноматозу костного мозга, острым гемолитическим анемиям, а также экспериментальным отравлениям животных гемолитическими ядами. Мегалобластоз не может рассматриваться как показатель значительной активности костного мозга, так как наличие мегалобластов говорит о совершенно ненормальных для взрослого условиях кроветворения. Активный эритропоэз сопровождается обычно лейкоцитозом нейтрофильным или, при определенных условиях, особенно при лечении сырой печенкой, эозинофильным, а также тромбоцитозом.

Особенно показателен ретикулоцитоз, доступный простому количественному учету: в ответ на возбуждение костномозгового эритропоэза в результате подвоза недостающего почему-либо кроветворного вещества наступает спустя приблизительно неделю резкое увеличение числа ретикулоцитов периферической крови-ретикулоцитарный криз, или пик, позволяющий предсказать наступающее вслед за тем (в дальнейшем уже при медленном снижении числа ретикулоцитов периферической крови) прогрессивное нарастание числа эритроцитов. При постоянно значительно повышенной кроветворной функции костного мозга с соответствующим постоянным значительным ретикулоцитозом периферической крови анемия, т. е. снижение числа эритроцитов в 1 мм3 крови, может даже не наступать, несмотря на непрекращающийся усиленный распад крови, как это иногда и наблюдается, например, при хронической гемолитической желтухе (так сказать, скрытая, или компенсированная, анемия). При наружных кровотечениях, например, геморроидальных, ретикулоцитов наблюдается при этом и в отсутствие гипербилирубинемии.
Более непосредственно об активности эритропоэза позволяет, конечно, судить исследование пунктата костного мозга, в котором можно обнаружить нормо-, эритро- и мегалобластическую реакцию с большим числом фигур деления клеток или же отсутствие реакции, даже аплазию костного мозга, несмотря на низкие цифры эритроцитов периферической крови (при апластической анемии). Правда, анемия с отсутствием регенеративных форм в периферической крови может развиться и при анатомически сохранном костном мозге вследствие нарушения своевременного выплывания из костного мозга клеток красной крови (псевдоапластическая, или гипорегенераторная, анемия).

Недостаточная активность костномозгового эритропоэза (что особенно характерно для истинной апластической анемии) сопровождается обычно лейко(нейтро)пенией, анэозинофилией, тромбопенией. При апластической анемии эритроциты морфологически не изменены, даже отсутствуем анизоцитоз, что может ввести исследующего в заблуждение.

Другие морфологические особенности эритроцитов говорят чаще о регенеративных или извращенных регенеративных изменениях (тельце Жолли, кольца Кебота, сфероциты, анизоцитоз) и труднее поддаются простому толкованию.
Пойкилоцитоз, как и некоторые изменения лейкоцитов (их тени, раздавленные лейкоциты, окончатые),-чаше результат периферических влияний в токе крови.

Селезенка

Селезенка-незначительный по величине орган (весом около 180-200 г)-по богатству ретикуло-эндотелиальной ткани и особенностям кровообращения играет большую роль в ряде функций организма.

  1. Кроветворение совершается в селезенке как в отношении лимфатической системы (в фолликулах), так и моноцитарной (в ее ретикуло-эндотелиальной части). Однако у взрослого при внекостномозговом (экстрамедуллярном) кроветворении в патологических условиях легко происходит возврат как по линии эритробластического, так и по линии лейкобластического ростка к миэлоидному кроветворению, имеющему нормально место в селезенке в эмбриональном периоде. Несомненно влияние селезенки на нормальное вызревание эритроцитов в костном мозгу, так как после ее удаления в крови всегда имеются эритроциты с мельчайшим точковидным остатком ядра (тельца Жолли).
  2. В отношении красной крови совершенно определенно установлено роль селезенки как органа эритрофагоцитоза (впервые доказанная для эндотелиальных клеток селезенки в печени Линтваревым), а в патологических условиях-как органа гуморального торможения костномозгового эритропоэза. Отмирающие эритроциты поглощаются ретикуло-эндотелиальными клетками красной пульпы и синусов селезенки. Распаду эритроцитов могут способствовать и физико-химические условия в застойной крови в петлях красной пульпы селезенки. В селезенке из гемоглобина распавшихся эритроцитов образуется билирубин, поступающий через селезеночную вену в общий кровоток, а также железо, частично откладывающееся в селезенке. В селезенке происходит распад и лейкоцитов (лейколиз), н кровяных пластинок. В патологии при спленогенных анемиях, наряду с низкими цифрами эритроцитов и гемоглобина, при низком цветном показателе, обычно находят и лейкопению, и тромбопению. Это торможение всех трех костномозговых ростков проявляется в патологии более определенно, чем указанное в предыдущем параграфе обратного порядка влияние селезенки на костномозговой эритропоэз.
  3. Фагоцитарная кровоочистительная функция, функция ретикуло-эндотелиальной ткани селезенки распространяется и на поглощение бактерий, простейших малярии, висцерального лейшманиоза, взвеси коллоидных красок, липоидов и т. д., а также на образование антител противоинфекционных, противоопухолевых и т. д. Таким образом, селезенка чувствительно реагирует на инфекции, участвует в обмене веществ, в системных ретикуло-эндотелиозах.
  4. Селезенка участвует в кровообращении, являясь депо крови, о чем упоминалось в главе о болезнях сердечно-сосудистой системы. Острое увеличение селезенки при инфекциях зависит, как показал С. П. Боткин, от паралитического ее полнокровия, а в дальнейшем-от серозного отека, клеточной гиперплазии, захватывания микробов и т. д.

Условия кровообращения в селезенке с многочисленными ее синусами, куда кровь поступает непосредственно из артерий, способствуют, с одной стороны, депонированию крови, а с другой-более длительному контакту клеточных элементов селезенки как с инфекционным возбудителем, так и с фагоцитируемыми эритроцитами.

Ретикуло-эндотелиальная система

Ретикуло-эндотелиальную систему, учение о которой обязано открытию И. И. Мечниковым макрофагов, а в дальнейшем работам Н. Н. Аничкова и др., прежде всего на основе способности различных клеток прижизненно поглощать бактерий, эритроциты (Мечников), коллоидальные краски, следует представлять как единую в функциональном смысле совокупность ретикулярных и эндотелиальных клеток костного мозга, селезенки, лимфатических узлов, купферовских клеток печени и родственных им недифференцированных элементов соединительной ткани других органов, например, легких, надпочечников-гистиоцитов (блуждающие клетки в покое, нолибласты Максимова, адвентициальные клетки). Акад. Богомольцем и его школой наиболее полно изучены разносторонние функции этой «физиологической системы соединительной ткани». Ретикуло-эндотелиальная система реагирует на ряд инфекций (малярия, брюшной тиф) гиперплазией или образованием инфекционных гранулой (например, при туберкулезе с развитием характерных эпителиоидных гигантских клеток). При лимфогранулематозе-системном страдании органов, богатых клетками ретикуло-эндотелиальной ткани,-находят также своеобразные гигантские клетки. Ретикуло-эндотелиозами называют близкие моноцитарной лейкемии системные заболевания той же ткани.

Антитела вырабатываются, помимо селезенки, также в костном мозгу и лимфатических узлах; с этой функцией, повидимому, связано и доказанное в последнее время образование глобулинов лимфоцитами.

Регуляция кроветворения

Для нормального кроветворения необходим, с одной стороны, пластический материал, доставляемый как за счет продуктов пищеварения при условии полноценной функции пищеварительных органов (антианемическое вещество, железо, белки), так и за счет продуктов распада эритроцитов, с другой же стороны,-собственно гуморальные стимуляторы, не всегда легко отграничиваемые от пластических элементов. Стимулирует эритропоэз низкое напряжение кислорода в костном мозгу, зависящее от низкого парциального давления кислорода в атмосфере и в крови, соли меди, кобальта, мышьяк, аскорбиновая кислота, инкреты щитовидной железы, передней доли гипофиза, половых желез, надпочечников.

Миэлоидную реакцию с эритроцитозом вызывает, по некоторым данным, ацидоз.

О вероятном торможении деятельности костного мозга со стороны Селезенки сказано выше.

Большое значение в регуляции кроветворения, недостаточно учитываемое в клинике, играет нервная система. В кроветворных органах обнаружено наличие интерорецепторов. Раздражение различных отделов нервной системы в эксперименте приводило к нарушению деятельности костного мозга и изменению состава периферической крови. Так, опыты, произведенные в лаборатории Боткина, с перерезкой седалищного нерва у животных, приводили к атрофии костного мозга на стороне повреждения. Раздражение блуждающего нерва в эксперименте на животных сопровождается лейкопенией и эозинофилией, а раздражение симпатического нерва-нейтрофильным лейкоцитозом. Одностороннее повреждение коры мозга может вызвать различие в морфологическом составе крови той и другой конечности. Ранний лейкоцитоз в периферической крови после травмы имеет нервнорефлекторную природу. Боткин в происхождении малокровных состояний признавал рефлекторный и центрально-нервный механизм, предполагая наличие в головном мозгу особого центра, регулирующего кроветворение и кроворазрушение. Для ряда анемий, как, например, глистных или раковых, где обычно принимают механизм развития в результате кровопотери или действия токсинов, Боткин на первое место ставил значение рефлекторного раздражения мозгового центра с богатых нервными окончаниями областей желудочно-кишечного тракта, особенно с привратнико-дуоденальной области; для других, как хлороз, злокачественное малокровие.

Боткин признавал корковое воздействие на центры регуляции кроветворения, приводя убедительные клинические примеры острого развития малокровного состояния под влиянием эмоциональной травмы. Наличие тех же закономерностей в отношении участия различных отделов нервной системы доказано и для происхождения других болезней кроветворной системы (эритремия, лейкемия, геморрагические диатезы, гемолитические состояния).

В лаборатории К. М. Быкова установлена возможность получения условнорефлекторного лейкоцитоза, фазность его течения и зависимость от типа нервной деятельности.

Советские гематологи отошли от узкого клеточно-морфологического изучения болезней крови и основное значение придают более широким физиологическим закономерностям нервно-гуморальной регуляции кроветворения и кроворазрушения (так называемая функциональная гематология).

На тех же основах изучаются и методы лечения болезней крови, в частности, переливание крови.

Методы исследования при заболеваниях крови сводятся в основном к определению содержания гемоглобина, эритроцитов, лейкоцитов (с применением оригинальных камер и сеток отечественных ученых-В. Е. Предтеченского, Горяева и др.), тромбоцитов в единице объема крови (иногда уже вид крови, вытекающей при уколе пальца, указывает на анемию); далее к изучению под микроскопом на мазках крови, окрашенных смесью Романовского (эозин с метиленовой синью или азуром) отдельных клеточных элементов (классическую морфологическую их характеристику дал А. Н. Крюков и др.); далее-пунктата костного мозга грудины, добываемого по методу, предложенному в 1927 г. Аринкиным, а также пунктата селезенки или лимфатических узлов. Исследование пунктата грудины позволяет уточнить диагноз мегалобластических и апластических анемий, тканевых лейкемий, множественной миэломы, системных липоидозов, а также метастазов опухолей в костный мозг и специфических изменений при милиарном туберкулезе; этим же путем обнаруживаются простейшие-возбудители висцерального лейшманиоза, добывается материал для высевания брюшнотифозной палочки, возбудителей сепсиса и т. д.

Применяется также биохимическое исследование пигментного (гемоглобинового) обмена, обмена железа, функциональные пробы с инъекцией адреналина (вызывающего сокращение селезенки), дачей тиреоидина (обусловливающего увеличение числа эритроцитов) и целый ряд других морфологических, физических, биохимических методов, отчасти упоминаемых при изложении частных форм болезней крови.

Лекция: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ГЕМОПОЭЗА

Термин внутренняя среда организма предложен французским физиологом Клодом Бернаром . В это понятие включена совокупность жидкостей:

  1. Кровь
  2. Лимфа
  3. Тканевая (интерстициальная, внеклеточная) жидкость
  4. Спинно-мозговая, суставная, плевральная и другие жидкости,

которые омывают клетки и околоклеточные структуры тканей, принимая тем самым непосредственное участие в осуществлении обменных реакций организма.

Основой внутренней среды организма является кровь , роль непосредственной питательной среды выполняет тканевая жидкость . Ее состав и свойства специфичны для отдельных органов, соответствуют их структурным и функциональным особенностям. Поступление из крови составных частей тканевой жидкости и их обратный отток в лимфу и снова в кровь избирательно регулируется тканевыми барьерами. Определяя состав крови, лимфы, тканевой жидкости, можно судить об обменных процессах, происходящих в отдельных органах, тканях или в организме в целом.

К. Бернар пришел к заключению, что «постоянство внутренней среды есть условие независимого существования», т.е. для того, чтобы организм функционировал эффективно, составляющие его клетки должны находиться в строго регулируемой среде. Действительно, внутренняя среда организма регулируется множеством специальных механизмов.

Для описания этого состояния в 1929 г. Уолтер Кэннон ввел термин гомеостаз (от греческого homoios – подобный, stasis – состояние). Под гомеостазом понимают сами согласованные физиологические процессы, поддерживающие большинство устойчивых состояний организма, а также регулирующие механизмы, обеспечивающие это состояние.

Живой организм представляет собой открытую систему , непрерывно обменивающуюся материей и энергией с окружающей средой. В этом обмене и поддержании постоянства внутренней среды участвует огромное число органов, систем, процессов и механизмов. Вся их совокупность представлена внешними и внутренними барьерами организма. К внешним барьерам относятся : кожа, почки, органы дыхания, пищеварительный тракт, печень. К внутренним барьерам : гистогематические, гематоэнцефалический, гематокохлеарный – их структурной основой является эндотелий капилляров.

ПОНЯТИЕ О ФУНКЦИОНАЛЬНОЙ СИСТЕМЕ КРОВИ

Под функциональной системой понимают совокупность различных органов, тканей, объединенных общей функцией, и нейрогуморальных механизмов регуляции их деятельности, направленную на достижение определенного конечного результата.

Отталкиваясь от этого определения, становится понятным выдвинутое в 1989 г. Г.Ф. Лангом предложение объединить:

  1. Кровь
  2. Нейрогуморальный механизма регуляции
  3. Органы гемопоэза и гемодиареза – костный мозг, вилочковую железу, лимфатические узлы, селезенку и печень

ввиду тесной их связи под общим названием – функциональная система крови . Компоненты этой системы осуществляют непосредственный контакт с кровным руслом. Такое взаимоотношение обеспечивает не только транспорт клеток, но и поступление различных гуморальных факторов из крови в кроветворные органы.

Главным местом образования клеток крови у человека является костный мозг . Здесь находится основная масса кроветворных элементов. В нем же осуществляются и разрушение эритроцитов, реутилизация железа, синтез гемоглобина, накопление резервных липидов. С костным мозгом связано происхождение популяции В-лимфоцитов , осуществляющих гуморальные реакции иммунитета, т.е. выработку антител.

Центральным органом иммуногенеза является вилочковая железа . В ней происходит образование Т-лимфоцитов , которые участвуют в клеточных реакциях иммунитета, направленных на отторжение тканей. Кроме вилочковой железы (тимуса) ответственными за выработку иммунитета являются селезенка и лимфатические узлы . Селезенка участвует в лимфоцитопоэзе, синтезе иммуноглобулинов, разрушении эритроцитов, лейкоцитов, тромбоцитов, в депонировании крови. Лимфатические узлы продуцируют и депонируют лимфоциты.

В регуляции деятельности системы крови важную роль играют гуморальные факторы – эритропоэтины, лейкопоэтины, тромбопоэтины . Кроме них действуют и другие гуморальные агенты – андрогены, медиаторы (ацетилхолин, адреналин) – влияют на систему крови не только вызывая перераспределение форменных элементов, но и путем прямого влияния на холино- и адренорецепторы клеток. Определенное влияние оказывает нервная система.

Регуляция системы крови представляет собой регуляцию гемопоэза , т.е. кроветворения, в котором различают эмбриональный гемопоэз – развитие крови как ткани – и постэмбриональный (физиологический) гемопоэз – система физиологической регенерации (восстановления) крови.

ЭМБРИОНАЛЬНЫЙ ГЕМОПОЭЗ (развитие крови как ткани)

Эмбриональный гемопоэз (развитие крови как ткани) происходит у эмбрионов сначала в стенке желточного мешка, затем в селезенке, печени, костном мозге и лимфоидных органах (тимус, лимфатические узлы).

  1. Кроветворение в стенке желточного мешка у человека начинается в конце 2-й и в начале 3-й недели эмбрионального развития. В мезенхиме стенки обособляются зачатки сосудистой крови, или кровяные островки. В них клетки округляются, теряют отростки и преобразуются в стволовые клетки крови (СК ). Часть стволовых клеток дифференцируется в первичные клетки крови (бласты ). Большинство первичных кровяных клеток митотически размножается и превращается в первичные эритробласты (предшественники эритроцитов). Из других бластов образуются вторичные эритробласты, а затем вторичные эритроциты или нормоциты (размеры их соответствуют эритроцитам взрослого человека). Часть бластов дифференцируется в гранулоциты – нейтрофилы и эозинофилы. Часть СК не изменяется и разносится током крови по различным органам зародыша, где происходит дальнейшая дифференцировка клеток крови. После редукции желточного мешка основным органом кроветворения временно становится печень.
  2. Кроветворение в печени . Печень закладывается примерно на 3-4-й неделе, а на 5-й неделе эмбриональной жизни она становится центром кроветворения. Источником кроветворения в печени являются стволовые клетки, мигрировавшие из желточного мешка. Из СК образуются бласты, дифференцирующиеся во вторичные эритроциты. Одновременно с эритроцитами в печени происходит образование зернистых лейкоцитов – нейтрофилов и эозинофилов. Кроме гранулоцитов образуются гигантские клетки – мегакариоциты – предшественники тромбоцитов. К концу внутриутробного периода кроветворение в печени прекращается.
  3. Кроветворение в тимусе . Тимус закладывается в конце первого месяца внутриутробного развития, и на 7-8 неделе он заселяется стволовыми клетками крови, которые дифференцируются в лимфоциты тимуса. Из них образуются Т-лимфоциты, которые в дальнейшем заселяют Т-зоны периферических органов иммунопоэза.
  4. Кроветворение в селезенке . Закладка селезенки происходит в конце 1-го месяца эмбриогенеза. Из вселяющихся сюда стволовых клеток крови (СК) происходит образование всех видов форменных элементов крови, т.е. селезенка в эмбриональном периоде представляет собой универсальный орган кроветворения.
  5. Кроветворение в лимфатических узлах . Первые закладки лимфатических узлов человека появляются на 7-8-й неделе эмбриогенеза. В этот же период происходит заселение их СК, из которых дифференцируются эритроциты, гранулоциты и мегакариоциты. Из моноцитов дифференцируются из СК лимфатических узлов Т- и В-лимфоциты.
  6. Кроветворение в костном мозге . Закладка костного мозга происходит на 2-м месяце эмбриогенеза. Из стволовых клеток крови в костном мозге формируются все форменные элементы крови. Часть стволовых клеток сохраняется в костном мозге в недифференцированном состоянии, они могут расселяться по другим органам и тканям, являясь источником развития клеток крови и соединительной ткани. Таким образом, костный мозг становиться центральным органом , осуществляющим универсальный гемопоэз , и остается им в течение постнатальной жизни. Он обеспечивает стволовыми клетками тимус и другие гемопоэтические органы.

ПОСТЭМБРИОНАЛЬНЫЙ ГЕМОПОЭЗ

Гемопоэзом называют развитие крови. Различают эмбриональный гемопоэз , который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз , который представляет собой процесс физиологической регенерации крови. Развитие эритроцитов называют эритропоэзом, развитие тромбоцитов – тромбоцитопоэзом, развитие лейкоцитов – лейкоцитопоэзом, а именно: гранулоцитов – гранулоцитопоэзом, моноцитов – моноцитопоэзом, лимфоцитов и иммуноцитов – лимфоцитопоэзом и иммуноцитопоэзом. Постэмбриональный гемопоэз совершается в специализированных гемопоэтических тканях – миелоидной , где происходит образование эритроцитов, гранулоцитов, тромбоцитов, агранулоцитов, и лимфоидной , где происходит дифференцировка и размножение Т- и В-лимфоцитов и плазмоцитов. Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови (клеточное обновление), который компенсирует физиологическое разрушение (снашивание) дифференцированных клеток.

Миелоидная ткань – расположена в эпифизах и полостях многих костей и является местом развития всех форменных элементов крови – эритроцитов, гранулоцитов, моноцитов, тромбоцитов, лимфоцитов, а также стволовых клеток крови и соединительной ткани, которая постепенно мигрирует и заселяет такие органы, как тимус, селезенка, лимфатические узлы и др.

Лимфоидная ткань – имеет несколько разновидностей, представленных в тимусе, селезенке, лимфатических узлах. Она выполняет основные 3 функции (см. схему выше) – образование лимфоцитов, образование плазмоцитов и удаление продуктов их распада.

Миелоидная и лимфоидная ткани являются разновидностями тканей внутренней среды. Они представлены основными двумя клеточными линиями: клетки ретикулярной ткани и гемопоэтические. Клетки ретикулярной ткани выполняют функции опорные и фагоцитирующие, а гемопоэтические клетки развиваются путем дифференцировки из полипотентных стволовых клеток крови (ПСК). Дифференцировка ПСК определяется рядом специфических факторов: эритропоэтинов – для образования эритроцитов, гранулопоэтинов – для миелобластов (гранулоцитов), лимфопоэтинов – для лимфоцитов, тромбопоэтинов – для образования из мегакариобластов тромбоцитов. Указанные вещества занимают ведущее место в регуляции гемопоэза по всем форменным элементам крови.

МЕХАНИЗМЫ РЕГУЛЯЦИИ ГЕМОПОЭЗА

В зависимости от вида клеток крови в гемопоэзе различают:

  1. Эритропоэз
  2. Лейкопоэз
  3. Тромбоцитопоэз.

Регуляция эритропоэза

Эритропоэз представляет собой процесс регенерации эритроцитов крови. Механизмов, регулирующих скорость эритропоэза, традиционно два:

  1. Гуморальный (именно, на первом месте)
  2. Нервный

Возмущающими (запускающими) факторами эритропоэза являются:

  1. Естественное уменьшение эритроцитов крови
  2. Уменьшение количества О 2 в окружающей среде, следовательно, и в крови – гипоксемия .

Гуморальная регуляция

  1. Основным пусковым фактором эритропоэза является гипоксемия . Количество О 2 в крови – это важнейший стимул для увеличения количества эритроцитов в крови.

Механизм: при увеличении количества О 2 в крови наиболее чувствительными органами к этому снижению являются почки, которые омываются кровью по почечным артериям. В этих условиях почки вырабатывают гормоноподобные вещества – эритропоэтины – они выделяются в кровь и приносятся к органам кроветворения (красный костный мозг), где под их влиянием усиливается эритропоэз. В результате количество эритроцитов в крови увеличивается, они присоединяют О 2 , в результате чего его дефицит в крови исчезает. Эритропоэтины действуют на эритропоэз несколькими путями:

  1. Они способствуют преобладанию дифференциации стволовых клеток крови (СК) эритроидного ряда;
    1. Ускоряют синтез гемоглобина, в результате чего его количество в крови нарастает;
    2. Ускоряют выход эритроцитов из красного костного мозга (нормальную скорость эритропоэза в красном костном мозге отражает 0,5-1% ретикулоцитов в крови. При увеличении этого количества говорят об увеличении скорости эритропоэза костным мозгом).
  1. Продукты метаболизма эритроцитов – второй пусковой фактор эритропоэза, который формируется как результат уменьшения количества эритроцитов в крови.

Механизм : по мере старения эритроцитов (продолжительность жизни до 120 суток) нарушается возможность поддержания структуры эритроцитов. Наступает их гемолиз (макрофаги в селезенке и печени удаляют продукты распада эритроцитов). Поступление этих продуктов распада с омываемой кровью к красному костному мозгу усиливает его деятельность – скорость эритропоэза возрастает, что приводит к восстановлению должного количества эритроцитов в крови.

  1. Влияние на скорость эритропоэза гипоксемии через участие гипоталамо-гипофизарной системы – снижение напряжения О 2 в циркулирующей крови (гипоксемия) улавливается хеморецепторами сосудистой системы, возбуждение от них передается через ЦНС на гипоталамус, который теснейшим образом связан с гипофизом (гипоталамо-гипофизарная система). В результате возбуждения в гипофизе происходит выработка ряда тропных гормонов, оказывающих влияния на секреторную деятельность других желез внутренней секреции (щитовидная железа, надпочечники и др.). Особое влияние оказывается на мозговой слой надпочечников, в результате концентрация адреналина в крови нарастает, что приводит к усилению эритропоэза костным мозгом.

Нервная регуляция эритропоэза

Возмущающим фактором также является гипоксемия:

Описанный механизм является экспресс-механизмом, обеспечивающим увеличение количества эритроцитов крови.

Т.о. ГИПОКСЕМИЯ – один из ведущих факторов регуляции эритропоэза. Отсюда, все факторы окружающей среды, вызывающие гипоксемию, влияют и на эритропоэз – мышечная работа, эмоциональные нагрузки, стрессовые ситуации, уменьшение напряжения О 2 в воздухе или снижение атмосферного давления и т.д.

Дополнительный блок информации

Эритропоэз : предшественники эритроцитов – это стволовые клетки красного костного мозга. В них осуществляется синтез гемоглобина. Для образование гема используется железо двух белков: ферритина и сидерофиллина . Суточная потребность организма в железе – 20-25 мг . Большая его часть поступает из отживших и разрушившихся эритроцитов, остальное количество доставляется с пищей.

Для образования эритроцитов необходимы фолиевая кислота и витамин В 12 . Всасывание вит.В 12 пищи сопровождается его взаимодействием с внутренним фактором Касла (внешним фактором Касла называется сам вит. В 12 , поэтому говорят о взаимодействии внешнего и внутреннего факторов Касла для эритропоэза). Внутренний фактор Касла представляет собой гастромукопротеин (выделяется обкладочными или париетальными гландулоцитами и добавочными гландулоцитами или мукоцитами). Образуется комплекс: В 12 (внешний фактор Касла) + внутренний фактор Касла . Этот комплекс с кровью попадает в костный мозг, где под его влиянием обеспечивается синтез глобиновой (белковой) части молекулы гемоглобина. Синтез железосодержащей части молекулы гемоглобина находится под контролем другого витамина – вит. С и вит. В 6 . Вит. В 12 также участвует в образовании липидной части стромы эритроцита.

В своем развитии эритроциты проходят несколько стадий. Ретикулоциты – это последние предшественники зрелых форм эритроцитов. Количество ретикулоцитов в процентном отношении является показателем скорости эритропоэза. В норме количество ретикулоцитов в крови составляет 0,5-1% от общего числа эритроцитов, что служит показателем нормальной скорости эритропоэза. Скорость эритропоэза может возрастать в несколько раз при обильных и быстрых кровопотерях, патологическом разрушении зрелых форм, в условиях гипоксии и гипоксемии. В плазме крови в этих условиях появляются в значительных концентрациях особые ускоряющие эритропоэз вещества – эритропоэтины (Карно и Дефляндер, 1906 г.). Они представляют собой гормон гликопротеиновой природы, синтезируемый почками и печенью, а также подчелюстными слюнными железами. Эритропоэтин в небольших концентрациях постоянно присутствует в плазме крови человека. Основной клеткой-мишенью для эритропоэтинов являются ядерные эритроидные предшественники в костном мозгу. Эритропоэтин увеличивает скорость образования гемоглобина. Помимо эритропоэтина на кроветворение оказывают влияние андрогены и ряд медиаторов (адреналин и норадреналин).

Продолжительность жизни эритроцитов – до 120 дней. При этом непрерывно образуются новые клетки и отмирают старые. Разрушение отживших эритроцитов происходит разными путями:

  1. Они гибнут от механического травмирования во время движения по сосудам;
  2. Часть фагоцитируется мононуклеарной фагоцитарной системой печени и селезенки;
  3. Старые эритроциты гемолизируются непосредственно в кровяном русле.

При разрушении эритроцитов гемоглобин распадается на гем и глобин. От гема отделяется железо. Оно сразу же используется для создания новых молекул гемоглобина. Возникающий избыток железа (если он возникает) запасается впрок в печени, селезенке, слизистой оболочке тонкой кишки: здесь эти молекулы железа вступают в соединение со специфическими белками, конечным итогом этой реакции является появление ферритина и гемосидерина .

ЛЕЙКОПОЭЗ

Лейкопоэз находится в прямой зависимости от распада лейкоцитов: чем больше их распадается, тем больше образуется. Стимулирующее влияние на лейкопоэз оказывают:

  1. Уменьшение количества лейкоцитов в циркулирующей крови;
  2. Продукты распада тканей, микроорганизмов;
  3. Увеличение концентрации токсинов белкового происхождения в крови и тканях;
  4. Нуклеиновые кислоты;
  5. Гормоны гипофиза – АКТГ, СТГ (тропные гормоны гипофиза);
  6. Нанесение болевых раздражителей.

Все перечисленные факторы являются возмущающими для системы лейкопоэза. Пути же реализации этих воздействий, опять-таки, традиционны: нервный и гуморальный. На первом месте необходимо отмечать все-таки гуморальный путь регуляции.

Разрушение и появление новых лейкоцитов происходит непрерывно. Они живут часы, дни, недели, часть лейкоцитов не исчезает на протяжении всей жизни человека. Место лейкодиареза : слизистая оболочка пищеварительного тракта, а также ретикулярная ткань.

ТРОМБОЦИТОПОЭЗ

Физиологическим регулятором процесса тромбоцитопоэза являются тромбопоэтины. Химически они связаны с высокомолекулярной белковой фракцией, относящейся к гамма-глобулинам. В зависимости от места образования и механизма действия различают тромбоцитопоэтины короткого и длительного действия. Первые образуются в селезенке и стимулируют выход тромбоцитов в кровь. Вторые содержатся в плазме крови и стимулируют образование эритроцитов в костном мозге. Особенно интенсивно тромбоциты вырабатываются после кровопотерь. Спустя несколько часов их число может удвоиться.

Нервная регуляция

Фактов, свидетельствующих о существовании специализированной системы, регулирующей кроветворение, не существует. Однако обильная иннервация кроветворных тканей, наличие в них большого числа интерорецепторов указывают на то, что эти органы включены в систему рефлекторных взаимодействий. Впервые идея нервной регуляции кроветворения и перераспределения форменных элементов крови была высказана С.П. Боткиным. Позднее это положение получило дальнейшее развитие в разнообразных методических условиях и было экспериментально подтверждено В.Н. Черниговским и А.Я. Ярошевским. Эти авторы показали наличие двусторонних связей кроветворных органов с центральными структурами нервной системы, следовательно, возможно существование безусловно-рефлекторных регулирующих механизмов работы этих органов. В настоящее время доказано наличие и условно-рефлекторного механизма регуляции гемопоэза. Т.о., гемопоэз может регулироваться как безусловнорефлекторно, так и условнорефлекторно.


Стенка желточного мешка (на 2-3й неделе внутриутробного развития)

Стволовая клетка крови мигрирует

1. Селезенка (с 1й недели эмбрионального развития) – универсальный орган кроветворения

2. Печень (с 3-4-5й недели эмбрионального развития) – бласты, грануло- и мегакариоциты

3. Тимус (с 7-8й недели эмбрионального развития) - лимфоциты

4. Лимфатические узлы (с 9-10й недели эмбрионального развития) – эритроциты, Т- и В-лимфоциты, гранулоциты

5. Красный костный мозг (с 12й недели эмбрионального развития и в постнатальной жизни) – является центральным органом кроветворения, обеспечивает универсальный гемопоэз

ритроциты

Тромбоциты

Лейкоциты

Агранулоциты:

Моноциты

Лимфоциты

Гранулоциты:

Нейтрофилы

Базофилы

Эозинофилы

Красный костный мозг (миелоидная ткань)

Тимус

  1. Образование лимфоцитов
  2. Образование плазмоцитов
  3. Удаление клеток и продуктов их распада

Лимфоидная ткань миндалин и кишечника

Лимфатические узлы

Селезенка

Форменные элементы крови

Органы гемопоэза

(Лимфоид-ная ткань)

Регуляция эритропоэза

Гипоксия

1)усиливает пролиферацию клеток-предшественников эритроидного ряда и всех готовых к делению эритробластов;

2)ускоряет синтез Hb во всех эритроидных клетках и ретикулоцитах;

3)ускоряет образование ферментов, участвующих в формировании гема и глобина;

4)усиливает кровоток в сосудах красного костного мозга, увеличивает выход в кровь ретикулоцитов

Почки (уровень оксигенации почек)

Сам эритропоэз

Эритропения

приводит к анемиям

Эритроцитоз

Возникает истинный (абсолютный) и относительный

Обеспечивается:

  1. В 12 + внутренний фактор Касла (предохраняет от расщепления ферментами пищеварительных соков);
  2. В 9 (фолиевая кислота);
  3. В 6 (пиридоксин) – участвует в образовании гема;
  4. Вит. С – поддерживает все этапы эритропоэза;
  5. Вит. Е (α-токоферол) – защищает мембрану эритроцитов от перекисного окисления, т.е. от гемолиза;
  6. В 2 – регулирует скорость окислительно-восстановительных реакций (гипорегенеративная анемия)

Необходимы для образова-ния нуклео-протеинов, деления и созревания ядер клеток

Гипоксемия

Возбуждение от хеморецепторов сосудов передается через центростремительные нервы к стволовой части мозга

Активация центров симпатической нервной системы

Активация симпато-адреналовой системы

Повышенный выброс адреналина (медиатора симпатической нервной системы)

Под действием симпатических влияний рефлекторно происходит повышенный выброс эритроцитов из селезенки (емкостные сосуды)

Регуляция гемопоэза (эритропоэза)

Гипоксемия

Хеморецепторы

ЦНС

Гипоталамус

ЦНС

Гипофиз

Тропные гормоны (АКТГ, СТГ)

Железы внутренней секреции (щитовидная железа, надпочечники)

Гормоны

Ствол мозга

Депо эритроцитов (селезенка)

Выброс эритроцитов

Увеличение напряжения О 2 крови

Усиление эритропоэза

Красный костный мозг

Продукты распада эритроцитов

Почки, печень

Эритропоэтины

Гуморальный путь регуляции

Нервный путь регуляции

Регуляция лейкопоэза

Возмущающие факторы ( a , b , c , d , e , f )

Рецепторы сосудистой системы, болевые рецепторы

ЦНС

Гипоталамус

Гипофиз выделяет гормоны

Симпатическая нервная система

АКТГ

СТГ

Надпочечники

Глюкокортикоиды

Красный костный мозг и другие органы лейкопоэза

Количество лейкоцитов

Лейкопоэтины

Почки, печень

Количество форменных элементов в крови зависит от ряда постоянно действующих факторов:

1 - разрушение клеток, закончивших жизненный цикл;

2 - новообразование клеток в кроветворном аппарате;

3 - перераспределение между циркулирующим и депонированным пулом;

4 - миграция лейкоцитов между кровью и тканями.

Несмотря на такую динамику, концентрация эритроцитов, лейкоцитов и тромбоцитов поддерживается в крови на удивительно постоянном уровне благодаря сложным нейро-гуморальным регуляторным механизмам. При многих состояниях, как физиологических, так и патологических, содержа­ние тех или иных клеток в крови изменяется - либо уменьшается, либо увеличивается, но даже и тогда организм удерживает постоянный, но но­вый уровень клеточного состава крови. После таких более или менее дли­тельных изменений количество форменных элементов в крови снова воз­вращается в границы физиологической нормы.

Известно рефлекторное влияние ЦНС на процессы перераспределения клеток между циркулирующей кровью и кровяными депо, на вымывание зрелых клеток из синусов костного мозга в кровоток. Под влиянием нерв­ной системы образуются гормоны, оказывающие, вместе с нервными ме­диаторами воздействие на депонирование крови, кроветворение и функции клеток крови. В костном мозге имеется большое скопление нервных окон­чаний, осуществляющих двустороннюю информационную связь его с отде­лами головного мозга. Считается, что симпатическая нервная система сти­мулирует образование клеток, а парасимпатическая - угнетает.

В гуморальной регуляции кроветворения главную роль играют различ­ные гемопоэтины - вещества, влияющие на размножение и дифференцировку клеток красного костного мозга.

В раннем эмбриональном периоде гемопоэз начинается в желточном мешке. Здесь первичные стволовые клетки размножаются и затем заселяют печень, селезенку и красный костный мозг. После рождения красный ко­стный мозг становится единственным органом, где образуются эритроци­ты, гранулоциты, моноциты, предшественники лимфоцитов и тромбоциты. Другие лимфоидные органы - тимус, селезенка, лимфоузлы - продолжают выполнять только лимфопоэтическую функцию.

Стволовые клетки красного костного мозга способны к самообновле­нию. Это значит, что в процессе их деления образуются дочерние клетки, часть которых превращается в будущие эритроциты, лейкоциты или тром­боциты, а часть сохраняют свойства стволовых клеток. Тем самым поддер­живается постоянное количество клеток крови взамен старых, и одновре­менно сохраняется пул стволовых клеток. Процесс кроветворения про­должается в течение всей жизни, и сколько клеток погибает и разрушается, столько же образуется новых форменных элементов из стволовых клеток.

Деление стволовых клеток и развитие их в различных направлениях ре­гулируется гемопоэтическими факторами роста (ГФР). Это - вещества, об­разующиеся в разных органах и клетках. Некоторые гемопоэтины посту­пают в красный костный мозг с кровью, другие образуются клетками, ок­ружающими очаги кроветворения в костном мозге.

Гемопоэтическое микроокружение - это клеточные и неклеточные эле­менты кроветворных органов. К ним относятся фибробласты, эндотелиоци-ты, остеобласты, адипоциты. Сами они не участвуют в кроветворении, но образуют нишу (матрикс), где стволовые клетки и их потомки размножа­ются (пролиферируют) и дифференцируются до перемещения в кровоток.

Стромальные клетки красного костного мозга окружают гемопоэтиче-ские клетки, образуя с ними межклеточные контакты, и секретируют гемо-поэтические факторы роста (ГФР). Эги вещества называются также коло-ниестимулирующими факторами (КСФ), поскольку клетки каждого на­правления гемопоэза располагаются колониями, это клоны - потомство одной клетки, являющиеся ее точной копией. ГФР (КСФ) являются глико-протеинами, это - гормоны, необходимые для выживания, пролиферации, дифференцировки всех гемопоэтических клеток. Вещества, подобные им по функциям, синтезируются также моноцитами и Т-лимфоцитами, они называются интерлейкинами.

К гемопоэтическим факторам относятся следующие вещества:

1 - интерлейкины (ИЛ). Синтезируется Т-лимфоцитами и моноцитами, влияют на развитие стволовых клеток в разных направлениях. После встре­чи с антигенами активированные моноциты и Т-лимфоциты значительно увеличивают секрецию интерлейкинов.

Особое значение имеют ИЛ-7, 2, 4, 6, они стимулируют стволовые клетки к образованию лимфоцитов.

2 - колоние-стимулирующие факторы (КСФ). Синтезируются в мак­рофагах, фибробластах, Т-лимфоцитах. Определяют развитие стволовых клеток в направлении развития гранулоцитов и моноцитов и регулируют их количество в крови.

3 - эритропоэтины - гормоны, образующиеся в почках и в меньшей сте­пени - в печени. Эритропоэтины ответственны за истинные эритроцитозы.

4 - тромбоцитопоэтины образуется эндотелиоцитами микроциркуля-горного русла. Регулируют численность тромбоцитов.

5 - гормоны тимуса - тимопоэтин, тимулин, тимазин, тимусораствори-мый факторы. Они регулируют пролиферацию и дифференцировку лимфо­цитов во всех лимфоидных органах.

Регуляция эритропоэза. Дифференцировка и пролиферация стволовых клеток в направлении эритропоэза регулируется КСФ микроокружения. Заключительные стадии эритропоэза (последние 10-18 делений) контроли­руются эритропоэтинами. Секреция эритропоэтинов в небольшом количе­стве происходит непрерывно, но увеличивается при гипоксии - недоста­точном содержании кислорода в тканях. Такое состояние возникает в плод­ном периоде, а также в условиях высокогорья, при длительных физических нагрузках.

В организме образуются также ингибиторы эритропоэтинов, они уменьшают образование эритроцитов. У здоровых животных ингибиторы эритропоэтинов имеют значение, например, после рождения, когда содер­жание эритроцитов постепенно уменьшается до уровня, свойственному взрослому организму.

Регуляция лейкопоэза и моноцитопозза. Начальные стадии образова­ния гранулоцитов и моноцитов из стволовых клеток регулируются интер­лейкинами (ИЛ-3, 5), образующимися Т-лимфоцитами, и КСФ - Г-КСФ (гранулоцитарно-колониестимулирующими факторами) и ГМ-КСФ гранолоцитарно-макрофагальными КСФ), которые синтезируются стро-мальными клетками красного костного мозга. На более поздних этапах дифференцировки большую роль играют гормоны гемопоэтического мик­роокружения - КСФ.

Регуляция лимфоцитопоэза. Начальные стадии дифференцировки стволовых клеток в направлении лимфопоэза индуцируются КСФ микро­окружения, а более поздние - интерлейкинами, секретируемыми лимфоци­тами и моноцитами. В-лимфоциты все стадии клеточной дифференцировки проходят в красном костном мозге и выходят в кровоток, имея на поверх­ности иммуноглобулиновые рецепторы. Затем они заселяют вторичные органы иммунной системы - селезенку, лимфоузлы. Предшественники Т-лимфоцитов на ранней стадии дифференцировки переносятся в тимус, здесь они приобретают соответствующие маркеры и рецепторы и в зрелом состоянии выходят в кровоток. Процессы в тимусе контролируются тими-ческими гормонами и клетками микроокружения.

Регуляция тромбоцитопоэза. Тромбоциты образуются из мегакарио-цитов - гигантских клеток красного костного мозга. Развитие стволовых клеток в направлении тромбоцитопоэза осуществляется при воздействии на них тромбоцитопоэтинов - гормонов, образующихся в печени и в почках. Другие гемопоэические факторы - ИЛЗ, 6 и 11 - имеют меньшее значение. В заключительной стадии развития мегакариоциты превращаются в клетки с большим количеством нитевидных отростков.

Эти отростки проникают в синусы красного костного мозга и там из них выбрасываются тромбоциты.

При этом сами мегакариоциты не погибают, их структура восстанавливает­ся и в них формируется новое поколение тромбоцитов.

На процессы кроветворения оказывают влияние гормоны эндокринных желез - тимуса, надпочечников, щитовидной железы, половых желез. Так, мужские половые гормоны стимулируют эритропоэз, женские - угнетают. Адренокорикотропный гормон гипофиза уменьшает содержание эозинофилов в крови и увеличивает количество нейтрофилов. Глюкокортикоиды (гормоны коры надпочечников) вызывают инволюцию тимуса, уменьшают содержание лимфоцитов и эозинофилов в крови.

Большое значение имеют кормовые факторы. Для полноценного крове­творения необходимо достаточное содержание в кормах белка, аминокислот, витаминов, минеральных веществ. Более полно изучен этот вопрос по отно­шению к эритропоэзу. Для синтеза гемоглобина и образования эритроцитов необходимы железо, кобальт, медь, марганец. Из витаминов важную роль играют цианкобаламин (В 12), фолиевая кислота, аскорбиновая кислота.

Однако для использования указанных веществ из корма необходимо, чтобы они всосались из кишечника. Поэтому нормальное функционирова­ние пищеварительной системы - залог полноценного кроветворения. Так, для всасывания цианкобаламина и защиты его от конкурентного использо­вания микрофлорой кишки необходим гастромукопротеин (муцин), содер­жащийся в желудочном соке. Эта функция гастромукопротеина была от­крыта русским терапевтом Боткиным И.М., и муцин желудочного сока по­лучил название «внутренний фактор кроветворения», а витамин В12, изу­ченные Каслом, назван «внешним фактором кроветворения», поскольку он поступает извне, с кормом. Вместе они составляют «фактор кроветворе­ния», или фактор Боткина-Касла.

31.Обмен веществ между кровью, тканями и лимфой. Механизм образова­ния тканевой жидкости. Лимфа, её состав, свойства и значение для ор­ганизма.

В образовании тканевой (интерстициальной) жидкости участвуют сле­дующие факторы:

- гидростатическое давление крови, или давление крови на стенку сосуда;

- онкотическое давление крови, или давление коллоидов, удерживающих воду внутри сосуда;

- проницаемость сосудистых стенок.

Если гидростатическое давление больше онкотического, то при доста­точной проницаемости капилляров происходит выпотевание, или транссу­дация плазмы крови за пределы сосуда. Такие условия имеют место в ар­териальной части капилляров, здесь гидростатическое давление равно 35-40 мм. рт. ст., а онкотическое 25-35 мм. Образующийся транссудат назы­вается тканевой жидкости. От плазмы крови тканевая жидкость отличается меньшим содержанием белков - до 3 % вместо 6-8 % в плазме.

После обмена веществами между клетками ткани и тканевой жидкостью последняя частично всасывается в венозные отделы капилляров и венулы, а частично - в лимфатические капилляры.

В венозной части капилляров гидростатическое давление крови, равное 15-20 мм рт. ст. оказывается меньше онкотического, которое осталось прежним. В венозное русло всасывается вода и вещества с небольшой мо­лекулярной массой.

Макромолекулы всасываются не в кровеносные капил­ляры, а в лимфатические, имеющие большую порозность.

Лимфа - это та часть тканевой жидкости, которая отводится от тканей через лимфатическую систему. По сравнению с плазмой крови в лимфе меньше питательных веществ, нет кислорода, значительно больше продук­тов жизнедеятельности клеток - не только конечных продуктов метаболиз­ма, но и веществ, синтезированных клетками для организма (белки, гликопротеины, липопротеиды, полисахариды). В лимфе, оттекающей от лимфоидных органов, содержатся лимфоциты.

Значение лимфы: дренаж тканей, отвод от тканей белков и других мак­ромолекул, возврат лимфоцитов.

Вся лимфа, оттекающая от органов, собирается в два крупных лимфати­ческих протока - грудной и шейный, которые впадают в переднюю полую вену, где лимфа смешивается с венозной кровью.

32.Факторы неспецифической резистентности организма .

Ниженазванные факторы защищают организм от любого чужеродного агента.

Естественные биологические барьеры - кожа, слизистые оболочки, гистогематические барьеры. Кожа осуществляет механическую защиту; с постоянно слущивающимся ороговевшим эпидермисом удаляются про­никшие между клетками микробы; выделяющийся пот обладает высокой бактерицидной активностью за счет и содержащихся в нем кислот и бакте­рицидных веществ. Слизистые оболочки дыхательных, мочеполовых и пи­щеварительных путей непроницаемы для большинства макромолекул, па­разитов, бактерий и вирусов. Вместе со слизью и отмирающими клетками удаляются, смываются и посторонние частицы. В секретах слизистых обо­лочек содержатся антибактериальные вещества, например - лизоцим. Бак­терицидным действием обладают слюна, желудочный сок, желчь, слезная жидкость, сперма.

Гистогематические барьеры - это барьеры, образованные рядом биоло­гических мембран между кровью и тканями. К ним относятся: гематоэнцефалический барьер (между кровью и мозгом), гематотимический (между кровью и тимусом), плацентарный (между матерью и плодом) и др. Они защищают органы от тех агентов, которые все же проникли в кровь через кожу или слизистые оболочки.

Фагоцитоз - процесс поглощения клетками инородных частиц и их пе­реваривание. К фагоцитам относятся микрофаги и макрофаги. Микрофаги - это гранулоциты, наиболее активными фагоцитами являются нейтрофилы. Легкие и подвижные, нейтрофилы первыми устремляются навстречу раз­дражителю, поглощают и своими ферментами расщепляют инородные час­тицы независимо от их происхождения и свойств. Эозинофилы и базофилы обладают слабо выраженной фагоцитарной активностью. К макрофагам относятся моноциты крови и тканевые макрофаги - блуждающие или фик­сированные в определенных участках.

Фагоцитоз протекает в 5 фаз.

1. Положительный хемотаксис - активное движение фагоцитов на­встречу химическим раздражителям.

2. Адгезия - прилипание чужеродной частицы к поверхности фагоцита. Происходит перестройка рецепторных молекул, они сближаются и концентрируются, затем запускаются сократительные механизмы цитоскелета, и мембрана фагоцита как бы наплывает на объект.

3. Образование фагосомы - втягивание внутрь фагоцита частицы, ок­руженной мембраной.

4. Образование фаголизосомы - слияние лизосомы фагоцита с фагосомой. Переваривание чужеродной частицы, то есть ее ферментативное расщепле­ние

5. Удаление ненужных продуктов из клетки.

Лизоцим - фермент, гидролизирующий гликозидные связи полиаминосахаров в оболочках многих микроорганизмов. Результатом этого является повреждение структуры мембраны и образование в ней дефектов (крупных пор), через которые вода проникает внутрь микробной клетки и вызывает ее лизис.

Лизоцим синтезируется нейтрофилами и моноцитами, он содержится в сыворотке крови, в секретах экзокринных желез. Очень высокая концен­трация лизоцима в слюне, особенно у собак, и в слезной жидкости.

В-лизины. Это ферменты, активирующие растворение клеточных мем­бран, в том числе микроорганизмов, их собственными ферментами. 6-лизины образуются при разрушении тромбоцитов в процессе свертывания крови, они содержатся в высокой концентрации в сыворотке крови.

Система комплемента. В систему комплемента входят: комплемент, пропердин и ионы магния. Пропердин- это бел­ковый комплекс, обладающий противомикробной и противовирусной ак­тивностью, но он действует не изолированно, а в комплексе с магнием и комплементом, активируя и усиливая его действие.

Комплемент («дополнение») - это группа белков крови, обладающих ферментативной активностью и взаимодействующих между собой по типу каскадной реакции, то есть первые активированные ферменты активируют ферменты следующего ряда путем расщепления их на фрагменты, эти фрагменты также обладают ферментативной активностью, поэтому число участников реакции лавинообразно (каскадно) возрастает.

Компоненты комплемента обозначают латинской буквой С и порядко­выми номерами - С1, С2, СЗ и т.д.

Компоненты комплемента синтезируются тканевыми макрофагами в печени, коже, слизистой кишки, а также эндотелием сосудов, нейтрофила­ми. Они постоянно находятся в крови, но в неактивном состоянии, и их содержание не зависит от внедрения антигена.

Активация системы комплемента может осуществляться двумя путями - классическим и альтернативным.

Классический путь активации первого компонента системы (С1) требу­ет обязательного присутствия в крови иммунных комплексов, состоящих из антигена и антитела. Это - быстрый и эффективный путь. Альтернативный путь активации наступает в отсутствии иммунных комплексов, тогда акти­ватором становятся поверхности клеток и бактерий.

Начиная с активации компоненты СЗ, запускается общий путь после­дующих реакций, который заканчивается образованием мембраноатакующего комплекса - группы ферментов, обеспечивающих лизис (растворение) объекта ферментативной атаки. В активации СЗ - ключевого компонента комплемента - участвуют пропердин и ионы магния. Белок СЗ связывается с мембраной микробной клетки. Микроорганизмы, несущие на поверхности активированный СЗ, легко поглощаются и разрушаются фагоцитами. Кроме того, освобождающиеся фрагменты комплемента привлекают к месту реак­ции других участников - нейтрофилов, базофилов и тучных клеток.

Значение системы комплемента:

1 - усиливает соединение антигена с антителом, адгезию и фагоцитар­ную активность фагоцитов, то есть способствует опсонизации клеток, подготавливает их к последующему лизису;

2 - способствует растворению (лизису) иммунных комплексов и выве­дению их из организма;

3 - участвует в воспалительных процессах (освобождение гистамина из тучных клеток, местная гиперемия, повышение проницаемости сосудов), в процессах свертывания крови (разрушение тромбоцитов и освобождение тромбоцитарных факторов свертывания крови).

Интерфероны - вещества противовирусной защиты. Они синтезируют­ся некоторыми лимфоцитами, фибробластами, клетками соединительной ткани. Интерфероны не уничтожают вирусы, но, образуясь в зараженных клетках, связываются с рецепторами рядом расположенных, здоровых кле­ток. Далее включаются внутриклеточные ферментные системы, блоки­рующие синтез белков и собственных клеток, и вирусов. Тем самым очаг инфекции локализуется и не распространяется на здоровую ткань.

Т.о., факторы неспецифической резистентности имеются в организме постоянно, они действуют независимо от конкретных свойств антигенов, они не усиливаются при контакте организма с чужеродными клетками или веществами. Это - примитивный, древний способ защиты организма от чужеродных веществ. Он не «запоминается» организмом. Хотя многие из названных факторов участвуют и при иммунном ответе организма, но ме­ханизмы активации комплемента или фагоцитов неспецифичны. Так, меха­низм фагоцитоза является неспецифическим, он не зависит от индивиду­альных свойств агента, а осуществляется против любой чужеродной части­цы - будь то клетка, или частица коллоидного серебра, или зерно чертеж­ной туши. Это не исключает того, что фагоцитоз осуществляется и в про­цессе иммунной защиты против конкретного антигена.

Также и лизоцим: его физиологическое значение заключается в регуля­ции проницаемости клеток организма путем разрушения полисахаридных комплексов клеточных мембран, а не реакция на микробы.

В системе профилактических мероприятий в ветеринарии существенное место занимают меры по повышению естественной резистентности живот­ных. Они включают в себя правильное, сбалансированное питание, доста­точное количество в кормах белков, липидов, минеральных веществ и ви­таминов. Большое значение в содержании животных отводится солнечной инсоляции, дозированной физической нагрузке, обеспечению хорошим санитарным состоянием, снятию стрессовых ситуаций.

При стойловом содержании сельскохозяйственных животных следует наиболее полно использовать для повышения естественной резистентности летние месяцы, уделять больше внимания пастбищному периоду. При круглогодовом стойловом содержании ответственность ветеринарных и зоотехнических специалистов по созданию оптимальных условий содержа­ния и кормления животных во много раз возрастает.