Где осуществляется газообмен между легкими и кровью. Газообмен между атмосферным воздухом и кровью называется внешним дыханием и осуществляется органами дыхания - легкими и внелегочными дыхательными путями. Парциальное давление газов

Что такое газообмен? Без него не сможет обойтись практически ни одно живое существо. Газообмен в легких и тканях, а также крови помогает насыщать клетки питательными веществами. Благодаря ему мы получаем энергию и жизненные силы.

Что такое газообмен?

Для существования живым организмам необходим воздух. Он представляет собой смесь из множества газов, основную долю которых составляют кислород и азот. Оба эти газа являются важнейшими компонентами для обеспечения нормальной жизнедеятельности организмов.

В ходе эволюции разные виды выработали свои приспособления для их получения, у одних развились легкие, у других - жабры, а третьи используют только кожные покровы. При помощи этих органов осуществляется газообмен.

Что такое газообмен? Это процесс взаимодействия внешней среды и живых клеток, в ходе которого происходит обмен кислорода и углекислого газа. Во время дыхания вместе с воздухом в организм поступает кислород. Насыщая все клетки и ткани, он участвует в окислительной реакции, превращаясь в углекислый газ, который выводится из организма вместе с другими продуктами метаболизма.

Газообмен в легких

Каждый день мы вдыхаем больше 12 килограмм воздуха. В этом нам помогают легкие. Они являются самым объемным органом, способным вместить до 3 литров воздуха за один полный глубокий вдох. Газообмен в легких происходит при помощи альвеол - многочисленных пузырьков, которые переплетены с кровеносными сосудами.

Воздух попадает в них через верхние дыхательные пути, проходя трахею и бронхи. Соединенные с альвеолами капилляры забирают воздух и разносят его по кровеносной системе. В то же время они отдают альвеолам углекислый газ, который покидает организм вместе с выдохом.

Процесс обмена между альвеолами и сосудами называется двусторонней диффузией. Он происходит всего за несколько секунд и осуществляется благодаря разнице в давлении. У насыщенного кислородом атмосферного воздуха оно больше, поэтому он устремляется к капиллярам. Углекислый газ имеет меньшее давление, отчего и выталкивается в альвеолы.

Кровообращение

Без кровеносной системы газообмен в легких и тканях был бы невозможен. Наше тело пронизано множеством кровеносных сосудов различной длины и диаметра. Они представлены артериями, венами, капиллярами, венулами и т. д. В сосудах кровь непрерывно циркулирует, способствуя обмену газов и веществ.

Газообмен в крови осуществляется при помощи двух кругов кровообращения. При дыхании воздух начинается двигаться по большому кругу. В крови он переносится, прикрепляясь к специальному белку гемоглобину, который содержится в эритроцитах.

Из альвеол воздух попадает в капилляры, а затем в артерии, направляясь прямо к сердцу. В нашем организме оно исполняет роль мощного насоса, перекачивая насыщенную кислородом кровь к тканям и клеткам. Они, в свою очередь, отдают кровь, наполненную углекислым газом, направляя её по венулам и венам обратно к сердцу.

Проходя через правое предсердие, венозная кровь завершает большой круг. В правом желудочке начинается По нему кровь перегоняется в Она движется по артериям, артериолам и капиллярам, где совершает обмен воздухом с альвеолами, чтобы начать цикл заново.

Обмен в тканях

Итак, мы знаем, что такое газообмен легких и крови. Обе системы переносят газы и обмениваются ими. Но ключевая роль принадлежит тканям. В них происходят главные процессы, изменяющие химический состав воздуха.

Насыщает клетки кислородом, который запускает в них целый ряд окислительно-восстановительных реакций. В биологии они называются циклом Кребса. Для их осуществления необходимы ферменты, которые также приходят вместе с кровью.

В ходе образуются лимонная, уксусная и другие кислоты, продукты для окисления жиров, аминокислот и глюкозы. Это один из важнейших этапов, который сопровождает газообмен в тканях. Во время его протекания освобождается энергия, необходимая для работы всех органов и систем организма.

Для осуществления реакции активно используется кислород. Постепенно он окисляется, превращаясь в углекислый газ - СО 2 , который выделяется из клеток и тканей в кровь, потом в легкие и атмосферу.

Газообмен у животных

Строение организма и систем органов у многих животных значительно варьируется. Наиболее схожими с человеком являются млекопитающие. Небольшие животные, например планарии, не имеют сложных систем для обмена веществами. Для дыхания они используют внешние покровы.

Амфибии для дыхания используют кожные покровы, а также рот и легкие. У большинства животных, обитающих в воде, газообмен осуществляется при помощи жабр. Они представляют собой тонкие пластины, соединенные с капиллярами и переправляющие в них кислород из воды.

Членистоногие, например многоножки, мокрицы, пауки, насекомые, не обладают легкими. По всей поверхности тела у них расположены трахеи, которые направляют воздух прямо к клеткам. Такая система позволяет им быстро передвигаться, не испытывая одышки и усталости, ведь процесс образования энергии происходит быстрее.

Обмен газов у растений

В отличие от животных, у растений газообмен в тканях включает потребление и кислорода, и углекислого газа. Кислород они потребляют в процессе дыхания. Растения не обладают для этого специальными органами, поэтому воздух поступает в них через все части тела.

Как правило, листья имеют наибольшую площадь, и основное количество воздуха приходится именно на них. Кислород поступает в них через небольшие отверстия между клетками, называемые устьицами, перерабатывается и выводится уже в виде углекислого газа, как и у животных.

Отличительной особенностью растений является способность к фотосинтезу. Так, они могут преобразовывать неорганические компоненты в органические при помощи света и ферментов. Во время фотосинтеза поглощается углекислый газ и производится кислород, поэтому растения являются настоящими «фабриками» по обогащению воздуха.

Особенности

Газообмен является одной из важнейших функций любого живого организма. Он осуществляется при помощи дыхания и кровообращения, способствуя освобождению энергии и обмену веществ. Особенности газообмена заключаются в том, что он не всегда протекает одинаково.

В первую очередь он невозможен без дыхания, его остановка в течение 4 минут способна привести к нарушениям работы клеток мозга. В результате этого организм умирает. Существует множество заболеваний, при которых наблюдается нарушение газообмена. Ткани не получают достаточно кислорода, что замедляет их развитие и функции.

Неравномерность газообмена наблюдается и у здоровых людей. Он значительно увеличивается при усиленной работе мышц. Буквально за шесть минут он достигает предельной мощности и придерживается её. Однако при усилении нагрузки количество кислорода может начать увеличиваться, что также неприятно скажется на самочувствии организма.

Газообмен в легких

Процесс газообмена между вдыхаемым воздухом и альвеолярным, между альвеолярным воздухом (его целесообразно называть альвеолярной газовой смесью) и кровью определяют по составу газов в указанных средах (табл. 8).

Таблица 8.

Парциальное давление газов

Парциальное давление каждого газа в смеси пропорционально его объема. Поскольку в легких вместе с кислородом, углекислым газом и азотом содержится еще и пара воды, для определения парциального давления каждого газа необходимо привести давление в соответствие с давления "сухой" газовой смеси. Если человек находится в "сухом" воздухе, то парциальное давление каждого газа следует рассчитывать учитывая величину общего давления. Влажность требует внесения соответствующих исправлений на пару воды. В табл. 9 приведены величины давления газов для "сухого" атмосферного воздуха при давлении в 101 кПА (760 мм рт. ст.).

Таблица 9.

Анализ видихуваної газовой смеси свидетельствует, что разные порции ее по процентному соотношению "основных" газов - 02 и СО2 - существенно различаются. Состав первых выдыхаемых порций ближе к атмосферному, поскольку это воздух мертвого пространства. Последние порции приближаются по своему составу к альвеолярной газовой смеси. Показатель парциального давления газа в альвеолярной смеси обозначается РА.

Для определения РА0 и РЛС0 в альвеолярной смеси необходимо вычесть ту часть давления, которая приходится на пары воды и азот. В результате получается, что уровень РАО равен 13,6 кПа (102 мм рт. ст.), РАС0 - 5,3 кПа (40 мм рт. ст.).

Для определения интенсивности газообмена организма кроме парциального давления газов необходимо знать количество поглощение 02 и выделение СО2. В состоянии покоя взрослый человек за 1 мин поглощает 250-300 мл кислорода и выделяет 200-250 мл углекислого газа.

Газообмен между легкими и кровью

Гемодинамика легких

В легких имеется двойная сеть капилляров. Собственно ткань легких питается из сосудов большого круга кровообращения. Эта часть составляет весьма незначительный процент (1 -2 %) всей крови легких.

В норме в сосудах малого круга находится 10-12 % всей крови в организме. Эти сосуды относятся к системе с низким АД (25-10 мм рт. ст.). Капилляры малого круга имеют большую площадь поперечного сечения (примерно на 80 % больше, чем в большом круге). Количество капилляров чрезвы

Рис. 80. Взаимоотношения альвеолы с сосудами (за Butler):

1,4 - бронхіолярний капилляр; 2 - плевра; С - альвеола; 5 - лимфатический капилляр; б - легочные капилляры

чайно велика. Она лишь немного меньше количества всех капилляров большого круга (8 и 10 млрд соответственно).

Нормальный газообмен требует адекватного соотношения вентиляции альвеол и кровотока в капиллярах, их оплетают (рис. 80). Однако это условие не всегда выполняется. Отдельные участки легких вентилируются и перфузуються не всегда одинаково. Попадаются плохо или совсем невентилируемые альвеолы при сохранении кровотока и наоборот-хорошо вентилируемые альвеолы при неперфузованих сосудах (рис. 81).

Газообмен через аерогематичний барьер

Газообмен в легких человека происходит через огромную площадь, что составляет 50-90 м2. Толщина аерогематичного барьера - 0,4-1,5 мкм. Газы через него проникают путем диффузии по градиенту парциального давления. У человека, находящегося в состоянии покоя, в приточній венозной крови Г^ составляет 40 мм рт. ст., aPvCO - около 46 мм рт. ст.

Газы проходят два слоя клеток (эпителий альвеол и эндотелий капилляров) и интерстициальное пространство между ними.

Таким образом, на пути каждого газа находятся пять клеточных и одна основная мембрана, а также шесть водяных растворов. К последнему относятся жидкость, покрывающая эпителий альвеол, цитоплазма двух

Рис. 81.

1 - адекватное; 2 - нормальная вентиляция в случае нарушения кровотока; 3 - нарушение аерогематичного барьера; 4 - нарушение вентиляции по сохраненного кровотока

Рис. 82.

клеток легочной мембраны, міжклітинна жидкость, плазма крови, цитоплазма эритроцита. Наиболее "труднопроходимые" участка - мембраны клеток. Скорость прохождения всех указанных сред каждым газом определяется, с одной стороны, градиентом парциального давления, а с другой - растворимостью газов в липидах, которые составляют основу мембран, и воде. Углекислый газ в липидах и воде растворяется в 23 раза активнее, чем кислород. Поэтому, несмотря на меньший градиент давления (для СО2 - 6 мм рт. ст., а для 02 - 60 мм рт. ст.), СО2 проникает через легочную мембрану быстрее, чем 02 (рис. 82). При прохождении крови по капилляру уровень Р0 в альвеолах и крови выравнивается через 0,2-0,25 с, а - уже через 0,1 сек.

Эффективность газообмена в легких зависит и от скорости кровотока. Она такая, что эритроцит проходит капіляром в течение 0,6 - 1 сек. За это время РА0 и Ра0 выравниваются. Но при условии чрезмерного увеличения скорости кровотока, например, в случае интенсивной физической нагрузки, эритроцит через легочный капилляр может проскакивать быстрее от критических 0,2-0,25 с, и тогда насыщение крови кислородом снижается.

ГАЗООБМЕН МЕЖДУ АЛЬВЕОЛАМИ И КРОВЬЮ

Газообмен осуществляется с помощью диф­фузии: СО 2 выделяется из крови в альвеолы, О 2 поступает из альвеол в венозную кровь, пришедшую в легочные капилляры из всех органов и тканей организма. При этом ве­нозная кровь, богатая СО 2 и бедная О 2 , превращается в артериальную, насыщенную О 2 и обедненную СО 2 . Газообмен между аль­веолами и кровью идет непрерывно, но во время систолы больше, чем во время диас­толы.

А. Движущая сила, обеспечивающая газо­обмен в альвеолах, - разность парциальных давлений РО 2 и РСО 2 в альвеолярной смеси газов и напряжений этих газов в крови. Пар­циальное давление газа - часть общего дав­ления газовой смеси, приходящаяся на долю данного газа. Напряжение газа в жидкости зависит только от парциального давления газа над жидкостью, и они равны между собой. Парциальное давление газа в смеси, согласно закону Дальтона, прямо пропорци­онально его объемному содержанию. Для его расчета необходимо от общего давления газо­вой смеси вычислить процент, равный содер­жанию этого газа в смеси. При этом необхо­димо учесть парциальное давление водяных паров. Так, например, парциальное давление водяных паров в газовой смеси в альвеолах при температуре тела 37 °С составляет 47 мм рт.ст., на долю давления газовой смеси при­ходится 760-47 = 713 мм рт.ст. Поскольку процентное содержание кислорода в альвео­лярной смеси равно 14 %, то

Углекислый газ диффундирует в альвеолы в 20-25 раз быстрее, чем кислород, вследст­вие его лучшей растворимости в жидкости и мембранах. Именно поэтому обмен СО 2 в легких происходит достаточно полно, не­смотря на небольшой градиент парциально­го давления этого газа и его напряжения - всего 6 мм рт.ст. (для кислорода - до 60 мм рт.ст.). В условиях покоя РСО 2 в артери­альной крови может колебаться в пределах 35-45 мм рт.ст. Кроме градиента парциаль­ного давления-напряжения, обеспечиваю­щего газообмен в легких, имеется и ряд дру­гих, вспомогательных факторов, играющих важную роль в газообмене (табл. 12.1).

Б. Факторы, способствующие диффузии газов в легких.

1. Огромная поверхность контакта легоч­ных капилляров и альвеол (60-120 м 2). Аль­веолы представляют собой пузырьки диамет­ром 0,3-0,4 мм, образованные эпителиоци-тами, причем каждый капилляр контактирует с 5-7 альвеолами.

2. Большая скорость диффузии газов через тонкую легочную мембрану - около 1 мкм. Выравнивание РО 2 в альвеолах и крови в легких происходит за 0,25 с; кровь находит­ся в капиллярах легких около 0,5 с, т.е. в 2 раза больше. Скорость диффузии СО 2 в 23 раза больше таковой О 2 , т.е. имеется вы­сокая степень надежности в процессах газо­обмена в организме. Большая диффузионная поверхность и большая скорость диффузии газов определяют хорошую диффузионную способность легких (количество миллилит­ров газа, проходящего через суммарную по­верхность легочной мембраны всех вентили­руемых альвеол обоих легких за 1 мин при градиенте парциального давления газа 1 мм рт. ст.). Диффузионная способность легких в покое для кислорода составляет около 25 мл-мин~"-мм рт.ст." 1 , для углекислого га­за - около 600 мл-мин~"-мм рт.ст." 1 . Естест­венно, чем больше поверхность газообмена, тем больше диффузионная их способность, поскольку это суммарный показатель.

3. Интенсивные вентиляция легких и кро­вообращение - активация вентиляции лег­ких и кровообращения в них, естественно, способствует диффузии газов в легких. Ин­тенсивность вентиляции различных отделов легких зависит от положения тела: в верти­кальном положении лучше вентилируются нижние отделы, в горизонтальном - отделы легких, находящиеся снизу (в положении на спине - дорсальные, на животе - вентраль­ные, на боку - тоже нижней части легких). Это объясняется тем, что отделы легких, на­ходящиеся снизу, сжаты под действием соб­ственной массы тела, так как они не имеют жесткого каркаса, а отделы легких, находя-

щиеся сверху, растянуты. Поэтому при вдохе нижние отделы легких имеют боль­шую возможность расправляться. Примерно так же изменяется и кровообращение в лег­ких.

В вертикальном положении величина ле­гочного кровотока на единицу объема ткани почти линейно возрастает в направлении сверху вниз. Меньше всего кровоснабжаются верхушки легких. В положении вниз головой кровоснабжение верхушек легких улучшается и может быть больше, чем в нижних его отде­лах. В положении сидя верхушки легких снабжаются меньше на 15 %, в положении стоя - меньше на 25 %. Это весьма важный факт, который необходимо учитывать при сердечно-легочной недостаточности: перфу­зия легких максимальна в положении лежа - рекомендация больному лечь в постель край­не важна в этой ситуации. В положении лежа на спине кровоснабжение легких в продоль­ном направлении практически везде одина­ково. При умеренной физической нагрузке различия в кровоснабжении разных отделов легких уменьшаются. Различия интенсивнос­ти кровообращения в разных отделах легких объясняются разной степенью сдавливания или расширения артериальных сосудов лег­ких, содержащих мало гладкомышечных эле­ментов, что является следствием низкого давления крови в них; давление в капиллярах легких равно 6-7 мм рт.ст.

По интенсивности кровообращения лег­кие делят на три зоны: верхушки легких, среднюю и нижнюю (зоны Веста -1,2, 3). Они мобильны и зависят не только от поло­жения тела, но и от интенсивности дыхания. Так, после спокойного выдоха зона 2 зани­мает примерно 2 /5 легкого, а после макси­мального выдоха все легкое примерно соот­ветствует зоне 3, так как оно растянуто меньше. В результате этого улучшается кро­вообращение в средних и верхних отделах легких и несколько ухудшается в нижних от­делах вследствие дополнительного сжатия нижних отделов легких и сужения их сосу­дов (нижние отделы легких всегда меньше расправлены). Поскольку кровоток в верх­них отделах легких мал, то объем их венти­ляции, хотя и снижен, но больше объема кровотока; в средних отделах объем венти­ляции несколько меньше объема кровотока: отношение объема вентиляции к объему перфузии в них составляет 0,8; в нижних от­делах данное соотношение несколько мень­ше и составляет 0,7.

4. Корреляция между кровотоком в дан­ном участке легкого и его вентиляцией. Если

участок легкого плохо вентилируется, то кровеносные сосуды в этой области сужают­ся и даже полностью закрываются. Это осу­ществляется с помощью механизмов мест­ной саморегуляции - посредством реакций гладкой мускулатуры: при снижении в аль­веолах РО 2 возникает вазоконстрикция. В эксперименте она наблюдается уже при небольшом снижении содержания кислоро­да (до 15-16 %) в газовой смеси, которой вентилируют легкое. Вентиляция легкого азотом также ведет к закрытию капилляров, вентиляция кислородом ведет к раскрытию капилляров легких. Эта реакция сохраняется даже на изолированном легком. При по­вышении СО 2 также возникает вазокон­стрикция, а при снижении РСО 2 сужаются бронхи. Последнее ведет к сохранению угольной кислоты при гипокапнии. Реакция усиливается при повышении рН крови. Сле­дует заметить, что, хотя и существует меха­низм, обеспечивающий корреляцию крово­обращения и вентиляции соответствующих участков легких, он нарушается в результате механического сдавления сосудов: при вы­дохе, когда давление в альвеолах повышает­ся, кровоток может сильно уменьшиться. Нередко отмечают, что при выдохе кровоток в сосудах легких может прекратиться вслед­ствие повышения давления воздуха в альве­олах на 1-2 мм рт.ст. Однако это мнение необоснованно, так как давление в капилля­рах легких составляет 6-7 мм рт.ст., т.е. в несколько раз больше давления воздуха в альвеолах на выдохе.

Из-за того что верхушки легких перерас­тянуты и по этой причине хуже вентили­руются, они чаще поражаются туберкулезом. В нормальных условиях у здорового челове­ка активно функционирует примерно V7 аль­веол, эти активно функционирующие участ­ки легких непрерывно меняются. Тот факт, что одновременно функционирует лишь часть альвеол, весьма важен. В случае пора­жения части легкого или даже всего легкого и невозможности излечения терапевтичес­кими средствами можно одно легкое удалить полностью. Оставшееся легкое обеспечит га­зообмен, достаточный для удовлетворитель­ной жизнедеятельности организма.

В. Газообмен в легком, естественно, ве­дет к изменению газового состава в легком по сравнению с составом атмосферного воз­духа. В покое человек потребляет около 250 мл О 2 и выделяет около 230 мл СО 2 . Поэтому в альвеолярном воздухе уменьшает­ся количество О 2 и увеличивается - СО 2 (табл. 12.2).

Изменения содержания О 2 и СО 2 в альвео­лярной смеси газов являются следствием по­требления организмом О 2 и выделения СО 2 . В выдыхаемом воздухе количество О 2 не­сколько возрастает, а СО 2 уменьшается по сравнению с альвеолярной газовой смесью вследствие того, что к ней добавляется воздух воздухоносного пути, не участвующий в газо­обмене и, естественно, содержащий СО 2 и О 2 в таких же количествах, как и атмосферный воздух. Азот в газообмене не участвует, неко­торое увеличение содержания его в альвео­лярном воздухе является относительным: объем выдыхаемого воздуха несколько мень­ше объема вдыхаемого. Это объясняется тем, что СО 2 выделяется из организма несколько меньше, нежели потребляется О 2 , из-за раз­личного содержания углерода и кислорода в различных окисляемых веществах организма. На долю инертных газов в атмосферном воз­духе приходится около 1 %. Кровь, обога­щенная О 2 и отдавшая СО 2 , из легких посту­пает в сердце и с помощью артерий и капил­ляров распределяется по всему организму, в различных органах и тканях отдает О 2 и полу­чает СО 2 .

Газообмен между атмосферным воздухом и кровью называется внешним дыханием и осуществляется органами дыхания - легкими и внелегочными дыхательными путями. Газообмен между легкими и другими органами осуществляет система кровообращения. Клеточное дыхание - биологическое окисление - обеспечивает организм энергией.








При спокойном дыхании за один вдох в легкие входит 0,3- 0,5 л воздуха (дыхательный объем). При самом глубоком дыхании дыхательный объем может достигать 3-5 л (жизненная емкость легких). Но и тогда после выдоха в легких остается более 1 л воздуха (остаточный объем). Жизненная емкость легких




Мертвое пространство образовано теми областями органов дыхания, где нет газообмена с кровью. В норме это внелёгочные дыхательные пути и большинство бронхов. Объем заключенного в них воздуха - около 150 мл, что составляет 30% дыхательного объема при спокойном дыхании. Таким образом, в обычных условиях почти треть вдыхаемого воздуха не участвует в газообмене.




3. Транспорт газов. В капиллярах легких (малый круг кровообращения) кровь насыщается кислородом и избавляется от углекислого газа, превращаясь из венозной в артериальную. Благодаря работе сердца кровь разносится по всем органам (большой круг кровообращения), в капиллярах которых происходят обратные процессы.


Основная часть кислорода находится в крови в виде соединения с гемоглобином (HbO 2) и совсем немного растворено в плазме. Углекислый газ переносится в основном плазмой - в виде ионов НСО 3 - и растворенного СО 2, в меньшей степени, эритроцитами - в соединении с гемоглобином (HbСO 2).




Это влечет за собой высвобождение CO 2 из соединения с гемоглобином (HbСO 2) и из солей угольной кислоты - гидрокарбонатов (НСО 3 -). Кислород диффундирует в обратном направлении- из воздуха в кровь, где интенсивно связывается гемоглобином. Поскольку в альвеолах относительно мало CO 2, он выходит из плазмы крови в альвеолярный воздух.


4. Тканевое дыхание (газообмен в тканях). В процессе клеточного дыхания постоянно потребляется кислород. Поэтому он диффундирует из плазмы крови в межклеточное вещество других тканей и далее - в клетки. Выделяемый клетками CO 2, наоборот, поступает в кровь, где частично связывается гемоглобином, а большей частью - с водой. Артериальная кровь превращается в венозную.





Непроизвольная регуляция частоты и глубины дыхания. ОСУЩЕСТВЛЯЕТСЯ НЕРВНАЯ РЕГУЛЯЦИЯ НЕРВНАЯ РЕГУЛЯЦИЯ Произвольная регуляция частоты и глубины дыхания. Дыхательным центром продолговатого мозга. Корой больших полушарий. Воздействие на холодовые, болевые и др. рецепторы может приостановить дыхание. Мы можем произвольно ускорить или остановить дыхание.

ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ

Количество кислорода , поступающего в альвеолярное пространство из вдыхаемого воздуха в единицу времени в стационарных условиях дыхания, равно количеству кислорода, переходящего за это время из альвеол в кровь легочных капилляров. Именно это обеспечивает постоянство концентрации кислорода в альвеолярном пространстве.

Эта основная закономерность легочного газообмена характерна и для углекислого газа : количество этого газа, поступающего в альвеолы из смешанной венозной крови, протекающей по легочным капиллярам, равно количеству углекислого газа, удаляющегося из альвеолярного пространства наружу с выдыхаемым воздухом.

В тканях всего тела, где происходит внутреннее дыхание, кислород переходит из капилляров в клетки, а углекислота - из клеток в капилляры путем диффузии.

Концентрация кислорода в клетках всегда ниже, а концентрация углекислоты – выше чем в капиллярах.

У человека в покое разность между содержанием кислорода в артериальной и смешанной венозной крови равна 45-55 мл О2 на 1 л крови, а разность между содержанием углекислого газа в венозной и артериальной крови составляет 40-50 мл СО2 на 1 л крови. Это значит, что в каждый литр крови, протекающей по легочным капиллярам, поступает из альвеолярного воздуха примерно 50 мл О2, а из крови в альвеолы - 45 л СО2. Концентрация О2 и СО2 в альвеолярном воздухе остается при этом практически постоянной, благодаря вентиляции альвеол.

ОБМЕН ГАЗОВ МЕЖДУ АЛЬВЕОЛЯРНЫМ ВОЗДУХОМ И КРОВЬЮ

Альвеолярный воздух и кровь легочных капилляров разделяет так называемая альвеолярно-капиллярная мембрана , толщина которой варьирует от 0.3 до 2.0 мкм. Основу альвеолярно-капиллярной мембраны составляет альвеолярный эпителий и капиллярный эндотелий, каждый из которых расположен на собственной базальной мембране и образует непрерывную выстилку, соответственно, альвеолярной и внутрисосудистой поверхности. Между эпителиальной и эндотелиальной базальными мембранами находится интерстиций. Рис.1.

В отдельных участках базальные мембраны практически прилегают друг к другу.

Обмен респираторных газов осуществляется через совокупность субмикроскопических структур , содержащих гемоглобин эритроцитов, плазму крови, капиллярный эндотелий и его две плазматические мембраны, сложный по составу соединительно-тканный слой, альвеолярный эпителий с двумя плазматическими мембранами, наконец, внутреннюю выстилку альвеол – сурфактант. За счет сурфактанта удлиняется расстояние для диффузии газов, что приводит к небольшому снижению концентрационного градиента на альвеолярно-капиллярной мембране.



Переход газов через альвеолокапиллярную мембрану происходит ПО ЗАКОНАМ ДИФФУЗИИ . Но при растворении газов в жидкости процесс диффузии резко замедляется. Углекислый газ, например, диффундирует в жидкости примерно в 13000 раз, а кислород - в 300000 раз медленнее, чем в газовой среде.

Количество газа, проходящее через легочную мембрану в единицу времени, т.е. скорость диффузии, прямо пропорциональна разнице его парциального давления по обе стороны мембраны и обратно пропорциональна сопротивлению диффузии.

Сопротивление определяется:

n толщиной мембраны величиной поверхности газообмена,

n коэффициентом диффузии газа, зависящим от его молекулярного веса и температуры,

n коэффициентом растворенности газа в биологических жидкостях мембраны

Направление и интенсивность перехода кислорода из альвеолярного воздуха в кровь легочных микрососудов, а углекислого газа - в обратном направлении определяет разница между парциальным давлением газа в альвеолярном воздухе и его напряжением (парциальным давлением растворенного газа) в крови. Для кислорода градиент давления составляет около 60 мм.рт.ст. (парциальное давление в альвеолах - 100 мм.рт.ст., а напряжение в крови, поступающей в легкие, - 40 мм.рт.ст.), а для углекислого газа - примерно 6 мм.рт.ст.(парциальное давление в альвеолах - 40 мм.рт.ст., напряжение в притекающей к легким крови - 46 мм.рт.ст.).

Биофизической характеристикой проницаемости аэрогематического барьера легких для респираторных газов является так называемая диффузионная способность легких . ЭТО КОЛИЧЕСТВО МЛ ГАЗА, ПРОХОДЯЩЕЕ ЧЕРЕЗ ЛЕГОЧНУЮ МЕМБРАНУ В 1 МИНУТУ ПРИ РАЗНИЦЕ ПАРЦИАЛЬНОГО ДАВЛЕНИЯ ГАЗА ПО ОБЕ СТОРОНЫ МЕМБРАНЫ В 1 мм рт. ст.



Величина диффузионной способности легких зависит от их объема и соответствующей ему площади поверхности газообмена.

Величина диффузионной способности легких при задержке дыхания на глубоком вдохе оказывается большей , чем в устойчивом состоянии на уровне функциональной остаточной емкости. За счет гравитационного перераспределения кровотока и объема крови в легочных капиллярах диффузионная способность легких в положении лежа больше , чем в положении сидя, а сидя - больше , чем в положении стоя. С возрастом диффузионная способность легких снижается.