Какую форму принимают жидкости в невесомости почему. Эти невероятные капли! Какая форма у капли

Космонавт, на­хо­дя­щий­ся на ор­би­таль­ной кос­ми­че­ской станции, ле­та­ю­щей во­круг Земли, вы­да­вил из тю­би­ка с кос­ми­че­ским пи­та­ни­ем каплю жидкости, ко­то­рая на­ча­ла ле­тать по ка­би­не станции. Какую форму при­мет эта капля?

Ответ поясните.


Поверхностное натяжение жидкостей

Если взять тонкую чистую стеклянную трубку (она называется капилляром), расположить её вертикально и погрузить её нижний конец в стакан с водой, то вода в трубке поднимется на некоторую высоту над уровнем воды в стакане. Повторяя этот опыт с трубками разных диаметров и с разными жидкостями, можно установить, что высота поднятия жидкости в капилляре получается различной. В узких трубках одна и та же жидкость поднимается выше, чем в широких. При этом в одной и той же трубке разные жидкости поднимаются на разные высоты. Результаты этих опытов, как и ещё целый ряд других эффектов и явлений, объясняются наличием поверхностного натяжения жидкостей.

Возникновение поверхностного натяжения связано с тем, что молекулы жидкости могут взаимодействовать как между собой, так и с молекулами других тел - твёрдых, жидких и газообразных, - с которыми находятся в соприкосновении. Молекулы жидкости, которые находятся на её поверхности, «существуют» в особых условиях - они контактируют и с другими молекулами жидкости, и с молекулами иных тел. Поэтому равновесие поверхности жидкости достигается тогда, когда обращается в ноль сумма всех сил взаимодействия молекул, находящихся на поверхности жидкости, с другими молекулами. Если молекулы, находящиеся на поверхности жидкости, взаимодействуют преимущественно с молекулами самой жидкости, то жидкость принимает форму, имеющую минимальную площадь свободной поверхности. Это связано с тем, что для увеличения площади свободной поверхности жидкости нужно переместить молекулы жидкости из её глубины на поверхность, для чего необходимо «раздвинуть» молекулы, находящиеся на поверхности, то есть совершить работу против сил их взаимного притяжения. Таким образом, состояние жидкости с минимальной площадью свободной поверхности является наиболее выгодным с энергетической точки зрения. Поверхность жидкости ведёт себя подобно натянутой упругой плёнке - она стремится максимально сократиться. Именно с этим и связано появление термина «поверхностное натяжение».

Приведённое выше описание можно проиллюстрировать при помощи опыта Плато. Если поместить каплю анилина в раствор поваренной соли, подобрав концентрацию раствора так, чтобы капля плавала внутри раствора, находясь в состоянии безразличного равновесия, то капля под действием поверхностного натяжения примет шарообразную форму, поскольку среди

всех тел именно шар обладает минимальной площадью поверхности при заданном объёме.

Если молекулы, находящиеся на поверхности жидкости, контактируют с молекулами твёрдого тела, то поведение жидкости будет зависеть от того, насколько сильно взаимодействуют друг с другом молекулы жидкости и твёрдого тела. Если силы притяжения между молекулами жидкости и твёрдого тела велики, то жидкость будет стремиться растечься по поверхности твёрдого тела. В этом случае говорят, что жидкость хорошо смачивает твёрдое тело (или полностью смачивает его). Примером хорошего смачивания может служить вода, приведённая в контакт с чистым стеклом. Капля воды, помещённая на стеклянную пластинку, сразу же растекается по ней тонким слоем. Именно из-за хорошего смачивания стекла водой и наблюдается поднятие уровня воды в тонких стеклянных трубках. Если же силы притяжения молекул жидкости друг к другу значительно превышают силы их притяжения к молекулам твёрдого тела, то жидкость будет стремиться принять такую форму, чтобы площадь её контакта с твёрдым телом была как можно меньше. В этом случае говорят, что жидкость плохо смачивает твёрдое тело (или полностью не смачивает его). Примером плохого смачивания могут служить капли ртути, помещённые на стеклянную пластинку. Они принимают форму почти сферических капель, немного деформированных из-за действия силы тяжести. Если опустить конец стеклянного капилляра не в воду, а в сосуд с ртутью, то её уровень окажется ниже уровня ртути в сосуде.

Решение.

1. Капля примет форму шара.

2. Все предметы на орбитальной станции находятся в состоянии невесомости, поэтому форма капли будет определяться только поверхностным натяжением. Из-за него капля будет стараться принять такую форму, при которой площадь поверхности будет минимальной, то есть форму шара.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

на тему: Физика жидкости в условиях невесомости

Введение

О роли силы поверхностного натяжения в условиях невесомости.

В обычных земных условиях, на любую жидкость, налитую в сосуд действует несколько сил. В результате воздействия силы тяжести, она постоянно находится на дне сосуда, в который налита. Так же имеют место силы поверхностного натяжения жидкости, которые постоянно стремятся уменьшить площадь поверхности жидкости.

Поверхностным натяжением называется сила, испытываемая молекулами жидкости на поверхности (сильнее всего на границе газ - жидкость) и направленная в глубину объема жидкости. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку.

Именно благодаря этой силе даже игла может плавать на поверхности воды. Именно благодаря силе поверхностного натяжения, струя воды "слипается" в цилиндр. В земных условиях силы поверхностного натяжения малы по сравнению и действие этих сил не всегда заметно.

Теперь, представим себе, что мы находимся в кабине космического корабля, в невесомости. Все объекты плавают по кабине нашего космического корабля. Мы знаем, что сила тяжести продолжает воздействовать на все объекты вокруг, ведь полёт космического корабля - это постоянное падение под её воздействием. И тела внутри корабля и сам корабль падают с одинаковым ускорением, поэтому тела не воздействуют на свою опору, то есть, не имеют веса. Действие силы тяжести как будто бы не проявляется. невесомость жидкость капиллярность кипение

И тут, главную роль начинают играть силы поверхностного натяжения.

1. Форма поверхности жидкости в условиях невесомости

Если выплеснуть жидкость из сосуда, она не польётся на пол (невесомость же), а будет плавать по кабине корабля. Не просто плавать, а плавать, собравшись в шар и, чтобы его разрушить, нужны немалые усилия.

Почему так происходит? Всё дело в том, что силы поверхностного натяжения всегда стремятся уменьшить площадь поверхности жидкости. А шар примечателен тем, что из всех геометрических тел при равном объёме он обладает минимальной площадью поверхности. также форма шара - это уровень низшей потенциальной энергии, все тела "рвутся" к такому состоянию. Сила поверхностного натяжения жидкости "стягивает" ее в такую форму. В условиях невесомости любой объем жидкости может принять строго сферическую форму!!! В земных условиях шарообразную форму имеют микроскопические капли. Крупные капли могут принять форму шара только в том случае, когда плотности жидкости и окружающей ее среды одинаковы. В стакан с водой с помощью шприца будем очень аккуратно и осторожно приливать спирт, чтобы жидкости не перемешались. Затем в спирт вольем чайную ложечку растительного масла. И вот словно в кабине космического корабля масло собралось в шарики! Они как бы парят на границе раздела масла и воды.

Впервые подобный опыт в 1863 году поставил бельгийский физик Жозеф Плато. Бельгийский ученый также провел эксперименты по вращению капли и наблюдению за происходящими с ней в результате этого метаморфозами. Плато удалось установить, что, по мере возрастания скорости вращения, капля меняла свою форму с шарообразной на овальную. И, наконец, при очень большой скорости вращения капля становилась тором.

Физики из Ноттингемского университета провели ряд экспериментов по определению формы водяных капель, подвешенных в пространстве с помощью диамагнитной левитации. Было показано, что при определенных условиях капли в равновесии могут принимать не только шарообразную или овальную форму, но также треугольную, четырех- и даже пятиугольную. Результаты исследований могут быть использованы для объяснения структур астрономических объектов (черные дыры, пояс Койпера и других).

2. Смачиваемость и капиллярность в невесомости

А как поведет себя капля жидкости на твердой поверхности? Наверно, каждый из вас замечал, что после дождя на окне видны капли. С точки зрения физики граница, по которой капля соприкасается с поверхностью твердого тела, называется поверхностью раздела фаз - жидкой и твердой. Угол между поверхностью капли и твердой поверхностью называется углом смачивания. Если этот угол меньше 90? и капля растекается по поверхности, то говорят, что жидкость хорошо смачивает поверхность. Если этот угол больше 90?, то капля стягивается в сплющенный, под давлением собственного веса, водяной шарик, не смачивая поверхность твердого тела.

В земных условиях вода, смачивая поверхность обезжиренного стекла, растекается по всей его поверхности. Это происходит потому, что силы притяжения между молекулами воды оказываются меньше, чем силы притяжения между молекулами воды и стекла.

В невесомости водяной шарик целиком не растекается по стеклу. Силы поверхностного натяжения стараются сохранить форму капли, не давая ей стекать со стеклянной пластинки. Из-за того, что вода не растекается, космонавты могут мыть голову, не снимая одежды, правда при этом воду и шампунь им приходится втирать в волосы с помощью тампона.

Силы поверхностного натяжения заставляют смачивающую жидкость подниматься по узким трубочкам - капиллярам, но для этого диаметр трубочки должен быть мал. Чем тоньше трубочка, тем на большую высоту поднимется жидкость по капилляру. А вот в условиях невесомости можно заставить жидкость за счет сил поверхностного натяжения подниматься туда, где просто уже - такого на Земле не увидишь никогда!

Известно, что в земных условиях, жирная поверхность, например поверхность пластилина, плохо смачивается, и капли воды не задерживаются на его поверхности, ведь силы притяжения между молекулами воды в этом случае больше, чем между молекулами воды и пластилина. Но в невесомости достаточно даже небольшого эффекта смачивания для того, чтобы водяной и пластилиновый шарик сцепились, а при большом желании и упорстве можно постараться шарик из пластилина даже закутать в водяную одежду. Как мы видим, малые по сравнению с силой тяжести силы поверхностного натяжения в условиях невесомости оказываются очень значимыми.

3. Как пить в космосе

Отсутствие в жидкости сил давления, зависящих от глубины погружения, приводит к тому, что в невесомости жидкость в сообщающихся сосудах не должна находиться на одинаковых уровнях, поэтому жидкость не будет выливаться из носика чайника, из горлышка бутылки и т.д. Жидкость из сосудов приходится либо выдавливать, либо выталкивать при помощи поршня.

Когда космонавта Александра Сереброва спросили о физических явлениях, связанных с невесомостью, он рассказал о необычности того, к чему каждый из нас привык в повседневной жизни. На Земле, чтобы налить воду в бутылку, подставляют горлышко под струю. В космосе в условиях невесомости жидкость не будет накапливаться на дне сосуда, она будет «плавать» внутри бутылки в виде шаровых капель разного размера. Заполнение сосуда водой вызовет вытеснение из него воздуха, но вместе с воздухом из сосуда будут «выплывать» взвешенные в нем капли воды. Если же струю с маленькой скоростью направить сразу на стенку сосуда, то вода, смачивая стенку, будет прилипать к ней. Взвешенных капель не будет (по крайней мере, до тех пор, пока сосуд не встряхивают). Чтобы достать воду, бутылку необходимо либо встряхивать, либо раскрутить так, чтобы жидкость прижалась к ее стенкам, либо использовать шприц.

Александр Серебров применил свой способ, помещая внутрь сосуда длинный и узкий предмет, например, черенок ложки, к которому капли прилипают за счет сил поверхностного натяжения. Жидкость «расползается» по черенку и подходит к краю горловины сосуда.

Капилярные эффекты позволяют здесь жидкости течь, скажем, вдоль линии сближения двух твердых поверхностей, сходящихся под достаточно узким углом. На Земле это явление проявляется слишком слабо, и даже исследовать его нелегко, однако в космических полетах может пригодиться. Пользуясь полученными в экспериментах данными, Вайслогелю с коллегами удалось разработать и запатентовать несколько устройств для управления жидкостями в условиях микрогравитации -- теплообменный конденсатор, сепаратор и кофейную чашку. С последним изобретением Вайслогелю помогли астронавт Доналд Петтит и два математика, работавших над теоретической частью исследований. «Космическая чашка» работает на базе тех же капиллярных явлений: вместо керамического цилиндра она представляет собой пластиковый лист, сложенный так, что концы его сходятся под острым углом. Это создает линию, где напиток удерживается и вдоль которой двигается прямо в рот.

Главное отличие изобретения - его форма. Так, в разрезе оно напоминает каплю.

Сообщается, что именно благодаря наличию у этой чашки острого ребра из нее можно пить в невесомости.

По словам создателя, похожая технология используется при создании топливных баков для космических аппаратов, летающих в невесомости.

В основе работы чашки лежит смачивание. На Земле оно отвечает за промокание, растекание жидкости по поверхности, а также за ее движение по капиллярам.

В невесомости этот эффект позволяет кофе оставаться в чашке, а не улетать в свободный полет при малейшем шевелении сосуда, но лишь при правильном подборе материала чашки и количества жидкости. Однако при этом кофе невозможно пить, поскольку если в обычных условиях при наклоне сосуда жидкость начинает течь под воздействием силы тяжести, то в невесомости этого не происходит.

Именно для решения этой проблемы у чашки имеется угол. Как показывает теория, если его величина меньше некоторого значения, которое зависит от жидкости и материала, то в результате смачивания жидкость сама "поползет" по желобу вверх к потребителю.

4. Кипение воды в невесомости

А вот будет ли действовать в невесомости выталкивающая или Архимедова сила? Вспомним, что ее происхождение связано с разностью весовых давлений жидкости или газа на верхнюю и нижнюю поверхности тела. В результате того, что давление снизу оказывается больше, возникает выталкивающая сила, направленная против силы тяготения и равная по величине весу вытесненной жидкости или газа. Но в космосе нет веса, а значит, и нет выталкивающей силы, она в невесомости не действует. Это сказывается на процессах в жидкости, содержащей пузырьки пара или газа.

Еще несколько лет назад никто не знал, что представляет собой процесс кипения в космосе. Конечно, физики ломали голову, анализируя сложный характер кипения здесь, на Земле. Про космос же только предполагали, что зрелище будет еще более захватывающее.

В начале 90-х годов группа ученых из университета Мичигана и НАСА решила заняться изучением этого вопроса.

Несмотря на всю зрелищность экспериментов, учеными двигало не просто любопытство. Поняв, как кипит жидкость в космосе, можно создать более совершенную систему охлаждения для космического корабля. Эти знания можно применить и для разработки электрогенераторов, использующих их солнечный свет для подогрева воды до состояния пара, которая затем бы вращала турбину, вырабатывая электричество. Это исследование может найти применение и на Земле - полученные данные можно использовать для лучшего изучения феномена кипения, что позволит усовершенствовать и земные электростанции.

Вообще-то на орбите кипение представляет собой более простой процесс, чем на Земле. Нагретая жидкость не поднимается, а остается рядом с нагревающей поверхностью и нагревается дальше. Те области жидкости, которые находятся на некотором расстоянии от источника тепла, остаются относительно холодными. Поскольку нагревается меньший объем воды, процесс происходит быстрее. По мере формирования пузырьков пара, они не поднимаются на поверхность, а объединяются в гигантский пузырь, который колеблется в жидкости.

В зависимости от температуры пузырь пара или оказывается в центре жидкости, или остается "прикрепленным" к источнику нагревания. Когда пузырь остается у источника тепла, он эффективно изолирует его от окружающей жидкости, вызывая дальнейшее повышение температуры. Сегодня исследователи продолжают расширять знания, основываясь на данных этих экспериментов. Лучше познав физику кипящей жидкости, инженеры смогут улучшить системы охлаждения и электроснабжения, которые очень пригодятся людям в будущем - как в космосе, так и на Земле.

Заключение

Краткое сравнение свойств жидкости на Земле и в невесомости.

Итак, жидкости ведут себя в невесомости совсем не так, как на Земле.

· На Земле: поведение жидкостей в большей степени определяется действием силы тяжести. В космосе: жидкостями управляет сила поверхностного натяжения.

· На Земле: можно легко разделить капельку жидкости шарообразной формы. В космосе: для этого придется приложить немалые усилия.

· На Земле: несмачиваемые жидкости не смачивают поверхность. В космосе: достаточно небольшого прикосновения несмачиваемой жидкости для того, чтобы смочить поверхность

· На Земле: если встряхнуть бутылку с какой-либо жидкостью, то она (жидкость) вернется в исходное состояние. В космосе: водяные шарики могут вести себя как "упругие мячики", неоднократно отскакивая от той же жидкости, из которой они изготовлены.

· Из-за отсутствия в невесомости Архимедовой силы и естественной конвекции по-другому кипят жидкости, намного медленнее замерзает капля воды.

Размещено на Allbest.ru

...

Подобные документы

    Сила поверхностного натяжения, это сила, обусловленная взаимным притяжением молекул жидкости, направленная по касательной к ее поверхности. Действие сил поверхностного натяжения. Метод проволочной рамки. Роль и проявления поверхностного натяжения в жизни.

    реферат , добавлен 23.04.2009

    Исследование зависимости поверхностного натяжения жидкости от температуры, природы граничащей среды и растворенных в жидкости примесей. Повышение давления газов над жидкими углеводородами и топливом. Расчет поверхностного натяжения системы "жидкость-пар".

    реферат , добавлен 31.03.2015

    Сущность и характерные особенности поверхностного натяжения жидкости. Теоретическое обоснование различных методов измерения коэффициента поверхностного натяжения по методу отрыва капель. Описание устройства, принцип действия и назначение сталагмометра.

    реферат , добавлен 06.03.2010

    История возникновения баллистического движения. Баллистика как наука. История открытия закона всемирного тяготения. Применение баллистики на практике. Траектория полета снаряда, баллистической ракеты. Перегрузки, испытываемые космонавтами в невесомости.

    реферат , добавлен 27.05.2010

    Основное свойство жидкости: изменение формы под действием механического воздействия. Идеальные и реальные жидкости. Понятие ньютоновских жидкостей. Методика определения свойств жидкости. Образование свободной поверхности и поверхностное натяжение.

    лабораторная работа , добавлен 07.12.2010

    Понятие кипения как интенсивного парообразования при нагревании жидкости. Поглощение теплоты при кипении, расчет ее количества, необходимого для перевода жидкости в пар. Удельная теплота парообразования. Непрерывное образование и рост пузырьков пара.

    презентация , добавлен 26.11.2012

    Определение веса находящейся в баке жидкости. Расход жидкости, нагнетаемой гидравлическим насосом в бак. Вязкость жидкости, при которой начнется открытие клапана. Зависимость расхода жидкости и избыточного давления в начальном сечении трубы от напора.

    контрольная работа , добавлен 01.12.2013

    Определение силы гидростатического давления жидкости на плоские и криволинейные поверхности, в закрытом резервуаре. Специфические черты гидравлического расчета трубопроводов. Определение необходимого давления рабочей жидкости в цилиндре и ее подачу.

    контрольная работа , добавлен 26.10.2011

    Виды вещества. Реакция твердого тела, газа и жидкости на действие сил. Силы, действующие в жидкостях. Основное уравнение гидростатики. Дифференциальное уравнение равновесия жидкости. Определение силы давления столба жидкости на плоскую поверхность.

    презентация , добавлен 28.12.2013

    Механика жидкостей, физическое обоснование их главных свойств и характеристик в различных условиях, принцип движения. Уравнение Бернулли. Механизм истечения жидкости из отверстий и насадков и методика определения коэффициентов скорости истечения.

В условиях невесомости проявляют себя несколько любопытных эффектов, о которых я обещал рассказать в одном из предыдущих сообщений.

Очень интересно рассмотреть, как ведут себя в невесомости две противоположности: вода и пламя.

В обычных земных условиях, на воду (вообще-то, на любую жидкость), налитую в сосуд действует несколько сил. В результате воздействия силы тяжести, она постоянно находится на дне сосуда, в который налита. Так же имеют место силы поверхностного натяжения жидкости, которые постоянно стремятся уменьшить площадь поверхности жидкости. Именно благодаря ей, игла может плавать на поверхности воды . Именно благодаря ей, струя воды "слипается" в цилиндр. Эти две силы всегда находятся в равновесии.

Теперь, представим себе, что мы находимся в кабине космического корабля, в невесомости. Все объекты плавают по кабине нашего космического корабля. Не забывайте, что сила тяжести продолжает воздействовать на все объекты вокруг, ведь, (как уже говорилось в одном из предыдущих сообщений) полёт космического корабля - это постоянное падение под её воздействием. И тела внутри корабля и сам корабль падают с одинаковым ускорением, поэтому тела не воздействуют на свою опору, то есть, не имеют веса.

И тут, главную роль начинают играть силы поверхностного натяжения. Если выплеснуть жидкость из сосуда, она не польётся на пол (невесомость же!!!), а будет плавать по кабине корабля. Не просто плавать, а плавать, собравшись в шар.

Почему так происходит? Всё дело в том, что силы поверхностного натяжения всегда стремятся уменьшить площадь поверхности жидкости. А шар примечателен тем, что из всех геометрических тел при равном объёме он обладает минимальной площадью поверхности.

Вообще, жидкости ведут себя в невесомости совсем не так, как на Земле. Вот, что рассказывает об этом космонавт Александр Серебров:

На Земле, чтобы налить воду в бутылку, подставляют горлышко под струю. В космосе в условиях невесомости жидкость не накапливается на дне сосуда, она «плавает» внутри сосуда в виде шаровых капель разного размера. Заполнение сосуда водой вызовет вытеснение из него воздуха и вместе с воздухом будут «выплывать» взвешенные в нем капли воды. Если струю с маленькой скоростью направить сразу на стенку сосуда, то вода, смачивая стенку, будет прилипать к ней и взвешенных капель не будет (по крайней мере, до тех пор, пока сосуд не встряхивают). Чтобы достать воду, бутылку необходимо либо встряхивать, либо раскрутить так, чтобы жидкость прижалась к ее стенкам, либо использовать шприц. Мной был придуман свой, способ: помещая внутрь сосуда длинный и узкий предмет, например, черенок ложки, к которому капли прилипают. За счет сил поверхностного натяжения жидкость «расползается» по черенку и подходит к краю горловины сосуда.
Совсем уж сложными становятся процедуры связанные с личной гигиеной: обычный душ в невесомости работать не будет. Вернее, будет, но капельки воды не будут стекать в сливное отверстие, а начнут разлетаться по кабине корабля, попадая даже в самые труднодоступные места:) То есть, задача эта - сверхсложная. Однако, в Советском союзе был таки создан космический душ. Душевые кабинки устанавливались на орбитальных станциях Салют-6 и Салют-7. Это были закрытые складные кабинки (чтобы капли не вылетали наружу). Вода вытекала из душа под действием струи сжатого воздуха и так же принудительно всасывалась в сливное отверстие. Однако, устройство признали неэффективным (из за слишком большого расхода воды, которая в космосе "на вес золота"), поэтому на станциях следующего поколения - Мир и МКС, душа нет. Космонавты моются обтираясь специальными влажными полотенцами. Всем нам известные влажные салфетки - самый настоящий продукт космической эры.

А что же пламя? Оно тоже ведёт себя в невесомости совсем не так, как на Земле. Посмотрите на фотографию:

Слева - пламя свечи в обычных условиях, справа - в невесомости. И снова объект нашего рассмотрения стремится принять форму сферы. Почему это происходит на этот раз?

На Земле благодаря воздействию гравитации возникают конвекционные токи, которые, в частности, поднимают вверх раскалённые частички сажи, в результате чего мы и наблюдаем такую форму и цвет пламени. В невесомости конвекционные токи отсутствуют и частички сажи никуда не поднимаются. Пламя свечи принимает форму шара и голубоватый оттенок. Этот цвет обусловлен тем, что материал свечи представляет собой смесь предельных углеводородов, которые при сгорании выделяют водород, который в свою очередь тоже начинает гореть. А горит водород, как раз синим пламенем.


В условиях невесомости вода принимает форму шара.

Можно ли бегать по поверхности воды?

Можно. Чтобы в этом убедиться, посмотрите летом на поверхность любого пруда или озера. По воде не только ходит, но и бегает немало живого и быстрого народца. Если учесть, что площадь опоры лапок у этих насекомых очень мала, то нетрудно понять, что, несмотря на их небольшой вес, поверхность воды выдерживает, не прорываясь, значительное давление.

Может ли вода течь вверх?

Да, может. Это происходит всегда и повсеместно. Сама поднимается вода вверх в почве, смачивая всю толщу земли от уровня грунтовых вод. Сама подни­мается вода вверх по капиллярным сосудам дерева и по­могает растению доставлять растворенные питательные вещества на большую высоту - от глубоко скрытых в земле корней к листьям и плодам. Сама движется вода вверх в порах промокательной бумаги, когда вам приходится высушивать кляксу, или в ткани поло­тенца, когда вытираете лицо. В очень тонких трубоч­ках - в капиллярах - вода может подняться на высоту до нескольких метров.

Чем это объясняется?

Еще одной замечательной особенностью воды - ее исключительно большим поверхностным натяжением.

Поверхностное натяжение воды столь велико? что по ней спокойно могут гулять, как посуху, довольно крупные водя­ные насекомые, вроде этих.

Молекулы воды на ее поверхности испытывают действие сил межмолекулярного притяжения только с одной стороны, а у воды это взаимодействие аномаль­но велико. Поэтому каждая молекула на ее поверхности втягивается внутрь жидкости. В результате возникает сила, стягивающая поверхность жидкости. У воды она особенно велика: ее поверхностное натяжение состав­ляет 72 дин/см.

Эта сила и придает мыльному пузырю, падающей капле и любому количеству жидкости в условиях неве­сомости форму шара. Она поддерживает бегающих по поверхности пруда жуков, лапки которых водой не смачиваются. Она поднимает воду в почве, стенки тонких пор и отверстий в ней, наоборот, хорошо сма­чиваются водой. Вряд ли вообще было бы возможно земледелие, если бы вода не обладала бы этой исклю­чительной особенностью.

Все ли свойства воды понятны ученым?

Конечно, нет! Вода - загадочное вещество. До сих пор ученые не могут еще понять и объяснить очень многие ее свойства. Непонятно, например, почему вода не только изменяет некоторые свойства при воздей­ствии на нее магнитного поля, но и надолго сохраняет эти изменения. В такой воде иначе идут реакции осаж­дения. Многие соли из обычной воды выпадают при ее испарении в форме плотного осадка, образуя накипь (посмотрите в чайник). «Намагниченная» вода накипи не образует. Почему это так - никто не знает. Но то, что явление это еще не понято и пока не объяснено, ни­сколько не мешает инженерам с успехом применять его в технике для борьбы с накипью в котлах тепловых электростанций.

Недавно было обнаружено новое загадочное явле­ние. Оказалось, что вода на Земле изменяет свою при­роду в зависимости от того, что происходит на Солнце и в космосе. Было замечено, что космические причины влияют на характер протекания в воде некоторых хи­мических процессов, например на скорость появления осадков. Почему - неизвестно.

Многие наблюдения и факты говорят о том, что талая вода обладает особыми свойствами - она более благоприятна для развития живых организмов. Поче­му - тоже неизвестно.

Можно не сомневаться, что все подобные загадки будут успешно разрешены наукой. Будет открыто еще немало новых, более удивительных загадочных свойств воды - самого необыкновенного вещества в мире.

Все ли свойства воды уже перечислены в этой статье?

Нет, к сожалению, далеко не все. Не хватило места даже для наиболее интересных. Но тот, кто захочет подробно познакомиться со всеми свойствами воды, которые уже изучены, сможет это сделать самостоятельно.

Для этого ему нужно будет прочесть во всех научных библиотеках мира все уже вышедшие жур­налы и книги, где напечатаны научные работы по химии, физике, биологии, физиологии, биохимии, биофизике, геологии, геохимии. Придется изучить и многие работы по астрономии и астрофизике (инте­ресно, есть ли вода на планетах, в межзвездном про-

Необычные физические свойства жидкостей проявляются не только в условиях научной лаборатории, но и в реальной жизни. Наблюдать удивительное поведение воды можно и на Земле, и в космосе. При этом не имеет особого значения, из какого источника взята вода: из колодца, озера, реки или моря. Пробы воды, набранные из разных источников, будут отличаться химическим составом, а проявление физических качеств останутся неизменными.

Поведение воды при воздействии силы тяжести

На воду, как и на любую другую жидкость, налитую в какую-либо емкость, под влиянием земной гравитации действует сила притяжения, которая прижимает жидкость ко дну сосуда. В то же время присутствуют силы поверхностного натяжения, заставляющие воду занимать как можно меньший объем. Эти силы позволяют налить воды в сосуд чуть больше, чем позволяет его объем. Вода как будто собирается шапкой над краями стенок. Выливаться ей не дает сила поверхностного натяжения.

Действие этой силы можно наблюдать, когда положенная на поверхность воды иголка остается плавать. Еще одно проявление силы поверхностного натяжения проявляется, когда вода выливается из наклоненного сосуда: струя воды всегда принимает форму цилиндра. При наличии гравитации сила поверхностного натяжения и сила тяжести всегда уравновешены.

Вода на орбите

Все тела в космическом корабле, находящемся на орбите планеты, пребывают в состоянии невесомости. Поэтому на воду в салоне космического аппарата в большей степени начинает действовать сила поверхностного натяжения. Известно, что шар, как геометрическое тело, обладает наименьшей площадью поверхности при одинаковом с другими телами объеме. Следовательно, вода, вылитая из сосуда в условиях невесомости, соберется в шарики и будет плавать в воздухе, так как не имеет веса.

Кстати, вода, налитая в бутылку, также «плавает» в ней в виде множества шариков и капель, и заполнение бутылки водой полностью вызовет определенные затруднения: наливаемая вода будет вытеснять из бутылки воздух вместе с шариками воды. В бутылке останется только та вода, которая прилипнет к стенкам. Стоит отметить, что в салоне космического корабля отсутствует душ, потому что выливающаяся из душевой лейки вода, само собой разумеется, не вытечет в сливное отверстие, а будет разлетаться шариками по душевой кабине. Вместо душа в гигиенических целях космонавты используют влажные полотенца, ставшие прототипами всем известным влажным салфеткам.

А знаете ли вы?..

Орбитальные станции «Салют» были оборудованы душем: вода в кабинку подавалась вместе со струей сжатого воздуха, а потом всасывалась как пылесосом в слив. Технология была признана нерентабельной из-за значительного расхода воды, и современную МКС душевыми кабинками не оснастили.

"Необычные проявления свойств воды в невесомости", БК "ПОИСК" , рассказать друзьям: Май 21st, 2017